Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Global Banking & Markets, Structured Credit (SFL) Desk Strat, Associate, London

Goldman Sachs
London
1 year ago
Applications closed

Related Jobs

View all jobs

Business & Data Governance Associate - Data Science & AI

Business & Data Governance Associate - Data Science & AI

Business & Data Governance Associate - Data Science & AI - Nomura

Lead Business and Data Analyst Job Description

Quantum Computing Specialist, Data Science & Innovation, CIB(UK, Singapore)

Director of Data Engineering - Communications Data Solutions

What we do

Structured Finance & Lending (SFL) Strats Team within Global Markets Division (GMD) is responsible for modeling and pricing of structured trades, as well as building risk management tools for SFL businesses and clients using cutting edge quantitative, machine learning, and other AI techniques. The business focuses on providing customized financing solutions to clients, which covers a wide range of collateral asset classes such as private credit and equity, capital calls or specialty assets, in the forms of Loans, Repurchase Agreements (Repos), Asset-Backed Securities and Derivatives. This role offers a unique opportunity to work within the Structured Financing and Lending businesses to deliver tailored solutions to our clients while gaining exposure to a wide range of asset classes.

Your Impact

SFL Strats play a critical role in deal structuring, pricing, execution and risk management. This is a highly visible platform to put quantitative skills and knowledge in use to make a direct impact on business growth. You will gain familiarity with different asset classes & risk factors while working on various trades and projects and build a broad foundation of product knowledge.

Responsibilities

Improve existing pricing models and create new ones for structured products. Understand transaction risks and analyze drivers of profits and losses. Provide analysis for new transactions. Drive commercial outcomes using data. Improve existing and create new models for the pricing and analysis of derivatives, public/private market assets and transactions Identify, curate, and integrate new structured and unstructured datasets into models. Build end to end solutions from data collection to automated actions.

Who We Look For

Strong quantitative and coding skills with desire to develop commercial mindset Solid work ethics, team oriented, high levels of motivation. Ability to work in fast-paced environment and time-sensitive situations. Effective communication skills in verbal and writing to both technical and business audience.

Basic Qualifications

Excellent academic record in a relevant quantitative field such as Mathematics, Physics, Engineering or Computer Science. Strong math and quantitative skills Experience in object-oriented programming with a language such as C++, Java or Python. Knowledge of Stochastic calculus and derivatives pricing, or Machine Learning background Knowledge of credit market and products, interest rates, FX, or risk management is preferred.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.