Global Banking & Markets, Structured Credit (SFL) Desk Strat, Associate, London

Goldman Sachs
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Lead Analyst - Data Science_ AI/ML & Gen AI - UK

Senior Lead Analyst - Data Science_ AI/ML & Gen AI - UK - Infosys

Data Engineer III - Python, Databricks & AWS

Loans Administrator and Data Analyst

Senior Data Engineer - Data and AI Governance

Junior Account Ref Data Analyst

What we do

Structured Finance & Lending (SFL) Strats Team within Global Markets Division (GMD) is responsible for modeling and pricing of structured trades, as well as building risk management tools for SFL businesses and clients using cutting edge quantitative, machine learning, and other AI techniques. The business focuses on providing customized financing solutions to clients, which covers a wide range of collateral asset classes such as private credit and equity, capital calls or specialty assets, in the forms of Loans, Repurchase Agreements (Repos), Asset-Backed Securities and Derivatives. This role offers a unique opportunity to work within the Structured Financing and Lending businesses to deliver tailored solutions to our clients while gaining exposure to a wide range of asset classes.

Your Impact

SFL Strats play a critical role in deal structuring, pricing, execution and risk management. This is a highly visible platform to put quantitative skills and knowledge in use to make a direct impact on business growth. You will gain familiarity with different asset classes & risk factors while working on various trades and projects and build a broad foundation of product knowledge.

Responsibilities

Improve existing pricing models and create new ones for structured products. Understand transaction risks and analyze drivers of profits and losses. Provide analysis for new transactions. Drive commercial outcomes using data. Improve existing and create new models for the pricing and analysis of derivatives, public/private market assets and transactions Identify, curate, and integrate new structured and unstructured datasets into models. Build end to end solutions from data collection to automated actions.

Who We Look For

Strong quantitative and coding skills with desire to develop commercial mindset Solid work ethics, team oriented, high levels of motivation. Ability to work in fast-paced environment and time-sensitive situations. Effective communication skills in verbal and writing to both technical and business audience.

Basic Qualifications

Excellent academic record in a relevant quantitative field such as Mathematics, Physics, Engineering or Computer Science. Strong math and quantitative skills Experience in object-oriented programming with a language such as C++, Java or Python. Knowledge of Stochastic calculus and derivatives pricing, or Machine Learning background Knowledge of credit market and products, interest rates, FX, or risk management is preferred.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.