Gen AI Specialist

London
9 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Gen AI Data Analyst

GenAI Data Analyst

Data Analyst (GenAi) KYC

Lead Data Scientist

Senior Machine Learning Engineer - Research

Gen AI Specialist
Location: Canary Wharf, London (3 days onsite)
Contract Length: 10 months
Daily Rate: £800 - £850 (inside IR35 via umbrella)

Are you a seasoned Data Scientist with a passion for Generative AI? Our client is seeking a Gen AI Specialist to join their dynamic Technology team in Canary Wharf. This role offers an exciting opportunity to work on innovative solutions that address complex financial data challenges, particularly in credit risk management.

Key Responsibilities:

Lead the development and coordination of analytical plans, ensuring alignment with various teams.
Manage deliverables in an agile environment while maintaining clear and effective communication with stakeholders.
Present analytical findings, updates, and challenges to diverse audiences including business units, technology management, and risk review teams.
Execute data modelling and cleaning processes utilising both internal and external data sources.
Build predictive and prescriptive models through data manipulation and cleaning.
Design, manage, and deploy analytical solutions leveraging Machine Learning (ML), Deep Learning (DL), and Large Language Models (LLMs) into production systems following the technology SDLC process.
Implement features throughout the ML lifecycle-Development, Testing, Training, Production, and Monitoring-to ensure the scalability and reliability of solutions.Qualifications:

PhD or master's degree in Computer Science, Data Science, Statistics, Mathematics, Engineering, or a related field.
Minimum of 5 years of industry experience as a data scientist, with a focus on ML modelling, Ranking, Recommendations, or Personalization systems.
Proven track record of designing and developing scalable and reliable machine learning systems.
Strong expertise in ML/DL/LLM algorithms, model architectures, and training techniques.
Proficiency in programming languages such as Python, SQL, Spark, PySpark, TensorFlow, or equivalent analytical/model-building tools.
Familiarity with tools and technologies related to LLMs.
Ability to work independently while also thriving in a collaborative team environment.
Experience with GenAI/LLMs projects.
Familiarity with distributed data/computing tools (e.g., Hadoop, Hive, Spark, MySQL).
Background in financial services, including banking or risk management.
Knowledge of capital markets and financial instruments, along with modelling expertise.

If you are a forward-thinking individual with an adaptive mindset ready to tackle complex business problems, we want to hear from you! Join our client's innovative team and contribute to the future of financial data analysis.

To Apply: Please submit your CV and a cover letter detailing your relevant experience and interest in the role.

Our client is an equal opportunity employer and welcomes applicants from diverse backgrounds.

Adecco is a disability-confident employer. It is important to us that we run an inclusive and accessible recruitment process to support candidates of all backgrounds and all abilities to apply. Adecco is committed to building a supportive environment for you to explore the next steps in your career. If you require reasonable adjustments at any stage, please let us know and we will be happy to support you

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.