Full Stack Software Engineer - Healthcare

Princeton Biopartners
Glasgow
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist (Full Stack)

Data Scientist (Full Stack)

Specialist Machine Learning Researcher

Senior Machine Learning Engineer

Data Engineer

Data Engineer

Job Title:Full Stack Software Engineer - Healthcare


Industry:Biotechnology Research


Location:UK (Remote)


Princeton Biopartners is a best-in-class provider of integrated consulting solutions to the life sciences sector. Our mission is to improve the evidence base, accessibility, and dissemination of biomedical innovations through strategic advisory, software, and our venture fund. We pride ourselves on establishing long-term client relationships and are dedicated to addressing pain points via integrated and transformative projects. We are looking for a highly motivated and talented Full Stack Software Engineer to become our first full-time technology hire. 


As a Software Engineer, you will be critical in bridging the gap between strategy and implementation. You'll be integral in project execution that combines our strategic insights with tech-forward solutions, ensuring clients receive end-to-end products. You will be expected to bring intellectual curiosity, analytical rigor, creativity, and strategic thinking to every engagement.This is a cross-functional role, with high growth potential - the ideal candidate will be highly driven and relish the chance to wear multiple hats (Engineering, Product, Data).

 

Must Haves:

  • UK based:role is remote, but only open to candidates localized within the UK
  • STEM degree:from a top research-intensive university, preferably in London or Oxbridge
  • Engineering mindset:obsessed with building robust software aligned with best practices
  • Comfortable client facing:as needed to gather requirements and feedback
  • Product-minded:high degree of ownership and deeply invested in the user experience
  • Highly curious:comfortable working through ambiguity with analytical rigor
  • Independent:self-starter, growth mindset, comfortable with limited supervision
  • Efficient:value pragmatism over idealism (efficiently arrive at 80-20 solutions)
  • Structured:thinker, problem solver, and communicator 


Key Responsibilities:

  • Design, develop, and maintain Web, Front End, and Data Visualization applications
  • Produce performant, well tested code that scales gracefully with more features, users, and data
  • Assist with deploying and embedding software products into consulting solutions
  • Understand the trade-offs between different engineering solutions
  • Write and maintain clear, concise documentation 


Technical Expertise: 

  • Previous experience in software engineering, preferably within the Life Sciences Sector
  • Strong grasp of computer science fundamentals: data structures and algorithms, complexity, object oriented design
  • Mastery of modern web technologies & Javascript is essential: React, CSS, Node, Angular, etc.
  • Proficient in at least one all purpose imperative language: Python (ideal), Java, C++, etc.
  • Familiar with modern DevOps / CloudOps best practices - test driven development, CI/CD, etc.  
  • Desirable: prior experience with Azure and NoSQL
  • Desirable: experience and interest in machine learning, data engineering, and data visualization

 

Cultural Fit:

  • Represent the firm in a professional manner and uphold its values and culture in all interactions
  • Entrepreneurial spirit & strong work ethic, demonstrating a drive to pursue new growth opportunities and lead strategic initiatives
  • Ensure confidentiality, honesty, transparency, and integrity in all business dealings while fostering a positive working environment of knowledge sharing, effective collaboration, and mutual support


Benefits:

  • Competitive compensation commensurate with experience
  • Unlimited annual leave 
  • Up to 15% performance-based bonus
  • Flexible working conditions and international travel
  • Budget for co-working space 
  • Professional development programs


We do not discriminate based upon race, religion, color, national origin, gender (including pregnancy, childbirth, or related medical conditions), sexual orientation, gender identity, gender expression, age, status as a protected veteran, status as an individual with a disability, or other applicable legally protected characteristics.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.