Full Stack Software Engineer - Healthcare

Princeton Biopartners
Glasgow
1 year ago
Applications closed

Related Jobs

View all jobs

Full Stack Data Engineer

Full Stack Data Engineer

Full Stack Data Engineer (Client Facing)

Full Stack Data Engineer (Client Facing)

Senior Full Stack Data Engineer (Client Facing)

Senior Full Stack Data Engineer (Client Facing)

Job Title:Full Stack Software Engineer - Healthcare


Industry:Biotechnology Research


Location:UK (Remote)


Princeton Biopartners is a best-in-class provider of integrated consulting solutions to the life sciences sector. Our mission is to improve the evidence base, accessibility, and dissemination of biomedical innovations through strategic advisory, software, and our venture fund. We pride ourselves on establishing long-term client relationships and are dedicated to addressing pain points via integrated and transformative projects. We are looking for a highly motivated and talented Full Stack Software Engineer to become our first full-time technology hire. 


As a Software Engineer, you will be critical in bridging the gap between strategy and implementation. You'll be integral in project execution that combines our strategic insights with tech-forward solutions, ensuring clients receive end-to-end products. You will be expected to bring intellectual curiosity, analytical rigor, creativity, and strategic thinking to every engagement.This is a cross-functional role, with high growth potential - the ideal candidate will be highly driven and relish the chance to wear multiple hats (Engineering, Product, Data).

 

Must Haves:

  • UK based:role is remote, but only open to candidates localized within the UK
  • STEM degree:from a top research-intensive university, preferably in London or Oxbridge
  • Engineering mindset:obsessed with building robust software aligned with best practices
  • Comfortable client facing:as needed to gather requirements and feedback
  • Product-minded:high degree of ownership and deeply invested in the user experience
  • Highly curious:comfortable working through ambiguity with analytical rigor
  • Independent:self-starter, growth mindset, comfortable with limited supervision
  • Efficient:value pragmatism over idealism (efficiently arrive at 80-20 solutions)
  • Structured:thinker, problem solver, and communicator 


Key Responsibilities:

  • Design, develop, and maintain Web, Front End, and Data Visualization applications
  • Produce performant, well tested code that scales gracefully with more features, users, and data
  • Assist with deploying and embedding software products into consulting solutions
  • Understand the trade-offs between different engineering solutions
  • Write and maintain clear, concise documentation 


Technical Expertise: 

  • Previous experience in software engineering, preferably within the Life Sciences Sector
  • Strong grasp of computer science fundamentals: data structures and algorithms, complexity, object oriented design
  • Mastery of modern web technologies & Javascript is essential: React, CSS, Node, Angular, etc.
  • Proficient in at least one all purpose imperative language: Python (ideal), Java, C++, etc.
  • Familiar with modern DevOps / CloudOps best practices - test driven development, CI/CD, etc.  
  • Desirable: prior experience with Azure and NoSQL
  • Desirable: experience and interest in machine learning, data engineering, and data visualization

 

Cultural Fit:

  • Represent the firm in a professional manner and uphold its values and culture in all interactions
  • Entrepreneurial spirit & strong work ethic, demonstrating a drive to pursue new growth opportunities and lead strategic initiatives
  • Ensure confidentiality, honesty, transparency, and integrity in all business dealings while fostering a positive working environment of knowledge sharing, effective collaboration, and mutual support


Benefits:

  • Competitive compensation commensurate with experience
  • Unlimited annual leave 
  • Up to 15% performance-based bonus
  • Flexible working conditions and international travel
  • Budget for co-working space 
  • Professional development programs


We do not discriminate based upon race, religion, color, national origin, gender (including pregnancy, childbirth, or related medical conditions), sexual orientation, gender identity, gender expression, age, status as a protected veteran, status as an individual with a disability, or other applicable legally protected characteristics.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.