Full-stack Developer (Python)

London
10 months ago
Applications closed

Related Jobs

View all jobs

Full Stack Data Engineer (Client Facing)

Full Stack Data Engineer (Client Facing)

Full-Stack Data Scientist: Boost Customer Value with ML

Senior Full Stack Data Engineer (Client Facing)

Data Engineering Manager

Senior Full Stack Data Engineer (Client Facing)

Full-stack Developer (Python)

Job Location: London (Hybrid working opportunities)

Salary: up to circa £50,000 + discretionary bonus

KEY SKILLS: Full-stack developer / Python / Data Modelling / Computer Science

Job Overview:

We are working with an SME, in the data analytics space, operating within the sports industry. They have an urgent opportunity within their development team. The successful applicant to the post of Full-stack Developer will help build and maintain web applications (both backend and frontend) and contribute with the upkeep and efficiency of the infrastructure.

Key Responsibilities:

  • Full-stack development: Design (collaborating with the wider technical and non-technical teams), develop and maintain the front-end and back-end components of our internal platforms, ensuring its high performance, robustness, and security.

  • Database integration: Implement database solutions for financial data, including data modelling, querying, and optimisation, to ensure efficient data access, consistency and storage.

  • Backend: Build a maintainable Python backend that can fluently cope with a daily changing product landscape.

  • API Integration: Create robust interfaces to facilitate seamless communication between the front-end, back-end and external APIs.

  • User Experience (UX): Collaborate with users to implement intuitive interfaces that enhance the overall user experience.

  • Testing and Quality Assurance: Write and execute unit tests, integration tests to maintain code quality and reliability.

  • Troubleshooting: Investigate and resolve technical issues, bugs, and performance bottlenecks promptly to ensure the platform's stability.

  • Documentation: Create and maintain comprehensive technical documentation, including architecture diagrams, code comments, and user guides.

  • Collaboration: Work closely with a cross-functional team, including product manager, analysts, and data scientists, to align technical solutions with business goals.

    Job Requirements:

  • Bachelor's degree in Computer Science, Information Technology, or a related field (or equivalent work experience).

  • Experience as a Full-stack Developer, with a strong preference to those working in a fast paced, start-up environment.

  • Proficiency in Python. Experience with front-end technologies (e.g. React) and back-end frameworks (e.g. FastAPI).

  • Solid understanding of relational databases and proficiency in SQL.

  • Knowledge of RESTful API design and development.

  • Strong problem-solving skills and attention to detail. Excellent communication and teamwork abilities.

  • Experience with cloud platforms (e.g. AWS) is a plus. DevOps and CI/CD experience is a plus

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.