Freelance Analytics Engineer

Zenith
Liverpool
1 month ago
Applications closed

Data Analytics and Dashboard Engineer


Zenith & Publicis Groupe:


Publicis Groupe, known for its world-renowned creativity, best in class technology, digital and consulting expertise, and the world’s third largest communications group in the world. With more than 80,000 people in over 100 countries, the Groupe has four Solution hubs: Creative with Publicis Communications, Media with Publicis Media, Digital business transformation with Publicis. Sapient, and Health & Wellbeing with Publicis Health.


Zenith is one of Publicis Groupe’s media agencies with a network of 250 offices across 74 countries with over 8,000 staff worldwide.


About the Role


Zenith Media are looking for a highly skilled Analytics Engineer, with Looker Dashboard development expertise, to join a client team working on the delivery of a paid media reporting dashboard for a high-profile fashion retail brand. In this role, you will be responsible for the collection, storage, transformation & dashboard visualisation of digital paid media data, working closely with our data engineers, analysts, and media planning teams to transform data into actionable insights.


The ideal candidate will have hands-on experience with Funnel.io & Looker, specifically in transforming data, parsing taxonomy values, building schemas & impactful dashboards.


Key Responsibilities:

• Design, develop, and maintain scalable data pipelines for digital paid media data.

• Utilise Funnel.io to transform data, parse values, and structure schemas for analytics and reporting.

• Work closely with media, analytics, and BI teams to ensure data integrity and accessibility.

• Optimise data storage and retrieval processes to support dashboarding and reporting solutions.

• Ensure seamless integration of digital media platforms (Google Analytics 4, Google Ads, Meta, TikTok, DV360, etc.) into a unified data architecture.

• Develop and maintain ETL/ELT workflows to streamline data ingestion, transformation, and distribution.

• Design and develop Looker Studio dashboards to visualise media investment, campaign performance, and marketing KPIs.

• Implement effective storytelling through data, ensuring dashboards are intuitive and aligned with business needs.

• Implement data quality checks, validation, and governance to ensure accuracy and reliability.


Required Skills & Experience

IR35 may apply to this booking.


Please send you CV to outlining your experience.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.