Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Founding Backend Engineer: AI Cybersecurity

Heart Mind Talent
London
11 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Founding Data Scientist

Data Engineer - AI & Automation

Machine Learning Engineer - AI and Automation

Senior Data Scientist

We are partnering with a VC backed, remote-first AI based cybersecurity looking to complete their Founding Team. As a Founding Engineer with a specialization in machine learning data engineering and model implementation, you'll have great experience building data pipelines and distributed processing systems. You’ll be responsible for designing and implementing robust, scalable systems, and efficient distributed processing frameworks that will power our core product.


Why Join Us:

  • Ambitious Challenges: We are using Generative AI (LLMs and Agents) to solve some of the most pressing challenges in cybersecurity today. You’ll be working at the cutting edge of this field, aiming to deliver significant breakthroughs for security teams.
  • Expert Team: We are a team of hands-on leaders with deep experience in Big Tech and Scale-ups. Our team has been part of the leadership teams behind multiple acquisitions and an IPO.
  • Impactful Work: Cybersecurity is becoming a challenge to most companies and helping them mitigate risk ultimately helps drive better outcomes for all of us.


What You Need to Be Successful:

  • Extensive Experience in backend development: Strong proficiency in backend languages and frameworks such as Python, Java, Go, or Node.js, and experience with building microservices.
  • Data Pipeline Mastery: Expertise in building and optimizing data pipelines using tools like Apache Kafka, Apache Spark, or AWS Glue.
  • Distributed Systems Knowledge: Experience designing and implementing distributed systems for parallel data processing, with a strong understanding of tools like Hadoop, Spark, or Flink.
  • Database Proficiency: Deep knowledge of both relational databases (e.g., PostgreSQL, MySQL) and NoSQL databases (e.g., Cassandra, MongoDB), with experience in designing scalable database architectures.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.