Founding AI Engineer

Bishopsgate
9 months ago
Applications closed

Related Jobs

View all jobs

Founding AI & Computer Vision Engineer — Equity, Unlimited PTO

Founding Engineer - Chief of AI and Computer Vision

Founding Machine Learning Engineer

Data Engineer

Data Engineer

MLOps Engineer

Founding AI Engineer
Up to £130k + equity
London (5 days on-site)

Be part of the founding team at an early stage Fintech.
Best suited to someone who enjoys building and shipping.
Opportunity to build an AI native toolkit from scratch. 
I’m looking for a Founding AI Engineer to join a very early stage (Pre Seed) startup in London. This role is best suited to people who thrive working in highly ambiguous environments and are happy to pivot at the drop of a hat.
 
Startup life isn’t for everyone, so you do really need to be someone that gets excited by the idea of wearing many hats and getting stuck in.
 
The good news is that the business has two years of runway based on funding alone, the even better news is they’re already revenue generating!
 
Being part of the founding team means you’ll have the opportunity to build an AI native toolkit from the ground up. If having a tangible impact on the core product and overall success of the business is something excites you, then this role is for you.
 
The preferred option is to find people who have come through the software engineering route into AI, as opposed to the more traditional route of Data Scientist/ML Engineer. By this I mean you’ll need to be comfortable writing and shipping code and working on AI APIs, less so model building, fine tuning LLMs etc.
 
Essential requirements:

Founder type mindset with a strong product lens.
You value speed and scale over perfection.
Highly autonomous.
Experience building AI agents/agentic systems/architecture/RAG pipelines.
Software engineering background.
Experience developing and deploying production application layer products.
Enjoy the buzz of startup life and want to work with high energy people. 
Just to highlight, this role is 100% on-site. You will need to be happy being in the office more often than not.
 
Unfortunately, sponsorship is not available for this role.
 
Reach out to Jamie Forgan for more information

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.