Founding AI Engineer

Bishopsgate
9 months ago
Applications closed

Related Jobs

View all jobs

Founding Machine Learning Engineer

Founding Lead Machine Learning Engineer

Machine Learning Engineer - LLM post-training/mid-training

Machine Learning Engineer - LLM post-training/mid-training

Machine Learning Engineer - LLM post-training/mid-training

Machine Learning Engineer - LLM post-training/mid-training

Founding AI Engineer
Up to £130k + equity
London (5 days on-site)

Be part of the founding team at an early stage Fintech.
Best suited to someone who enjoys building and shipping.
Opportunity to build an AI native toolkit from scratch. 
I’m looking for a Founding AI Engineer to join a very early stage (Pre Seed) startup in London. This role is best suited to people who thrive working in highly ambiguous environments and are happy to pivot at the drop of a hat.
 
Startup life isn’t for everyone, so you do really need to be someone that gets excited by the idea of wearing many hats and getting stuck in.
 
The good news is that the business has two years of runway based on funding alone, the even better news is they’re already revenue generating!
 
Being part of the founding team means you’ll have the opportunity to build an AI native toolkit from the ground up. If having a tangible impact on the core product and overall success of the business is something excites you, then this role is for you.
 
The preferred option is to find people who have come through the software engineering route into AI, as opposed to the more traditional route of Data Scientist/ML Engineer. By this I mean you’ll need to be comfortable writing and shipping code and working on AI APIs, less so model building, fine tuning LLMs etc.
 
Essential requirements:

Founder type mindset with a strong product lens.
You value speed and scale over perfection.
Highly autonomous.
Experience building AI agents/agentic systems/architecture/RAG pipelines.
Software engineering background.
Experience developing and deploying production application layer products.
Enjoy the buzz of startup life and want to work with high energy people. 
Just to highlight, this role is 100% on-site. You will need to be happy being in the office more often than not.
 
Unfortunately, sponsorship is not available for this role.
 
Reach out to Jamie Forgan for more information

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.