Forward Deployed Data Scientist

Signal
London
3 months ago
Applications closed

Related Jobs

View all jobs

Senior Manager, Forward-Deployed Data Science

MLOps Engineer

Senior Leader, Forward-Deployed AI Data Science

Principal Data Engineer (MS Azure)

Lead Configuration and Data Engineer

Lead Configuration and Data Engineer

4 days ago Be among the first 25 applicants

Get AI-powered advice on this job and more exclusive features.

Signal Ocean is the technology arm of the Signal Group. Our primary product, The Signal Ocean Platform, helps shipping and commodities professionals navigate their complex decision making. Driven by advanced machine learning and artificial intelligence, our technology suite provides tailored, exclusive insights that support our clients in achieving performance and efficiency. By securely handling and combining private and public shipping data flows, and applying advanced analytics, insights are delivered over web and mobile applications, as well as through a rich set of APIs and SDKs. Our backend architecture is abstracted to modularly offer deep analytics capabilities that are leveraged in the solutions that we offer or can be directly embedded in our client's system topologies.


About Signal Ocean:


Signal Ocean is the technology arm of the Signal Group. Our primary product, The Signal Ocean Platform, helps shipping and commodities professionals navigate their complex decision making. Driven by advanced machine learning and artificial intelligence, our technology suite provides tailored, exclusive insights that support our clients in achieving performance and efficiency. By securely handling and combining private and public shipping data flows, and applying advanced analytics, insights are delivered over web and mobile applications, as well as through a rich set of APIs and SDKs. Our backend architecture is abstracted to modularly offer deep analytics capabilities that are leveraged in the solutions that we offer or can be directly embedded in our client's system topologies.

Summary



Signal is looking for a Forward Deployed Data Scientist to join our high-growth team. This is not your typical data role—you'll sit at the crossroads of data science, sales engineering/technical sales, client success and product management, working closely with enterprise clients to design, prototype, and deliver data solutions that quickly generate client value using Signal's technologies and data—while also accelerating adoption, driving revenue, and feeding insights back into the product for improvement.

What You'll Do:


Client-Centric Data Solutions for fast time-to-value

  • Collaborate with clients, sales, and client success teams to uncover pressing real-world data needs and/or friction points, early in the commercial process.
  • Discover, prototype, validate, build, deliver and support working data solutions that materialize client value as quickly and as early as possible.
  • Accumulate experience and knowledge to act as a trusted technical advisor, helping clients explore, understand, learn and find value in Signal's unique data assets.

Forward Data Science, Engineering & Product Innovation

  • Quickly learn and use Signal's products and stack, including SDKs (Python, C#), APIs, (Snowflake) Data Warehouse or other assets
  • Learn and become proficient in the client's diverse technical stacks, including anything from MS Excel, PowerBI, SQL, Snowflake, DataBricks, Python and more
  • Work closely partnered with Signal's product and data science teams and represent them, their products, standards, processes, priorities, etc.
  • Gather, triage and consolidate product feedback and ideas and contribute inputs and insights into the product management cycle
  • Get involved and contribute in data design sprints, client metrics, early testing and other types of partnership with Signal's product and data science teams.

API/Data Enablement Assets & Documentation

  • Shape how Signal's data services are marketed, discovered, learned (internally by Signalers and externally by clients), and utilized
  • Develop sales and client success enablement assets so that repeatable processes, relevant common examples, etc are easy to deliver and digest by all
  • Help create a fast and efficient API/data client onboarding playbook
  • Maintain, improve and extend API/data technical documentation
  • Help describe Signal's API/Data roadmap and vision to clients

Usage Intelligence & Feedback Loops

  • Track client usage across APIs and data products; uncover what's working and what needs improvement.
  • Reframe underused assets for higher impact and increased adoption.
  • Feed real client metrics back into engineering and product roadmaps.

Requirements

What You Bring:

  • 5+ years in data-heavy roles (e.g., Data Engineer, Data Analyst, Data Scientist, API developer, etc.)
  • You have extensive experience working in client facing roles
  • Strong command of Python, SQL, and API schemas—and the ability to explain them clearly.
  • Deep experience building or deploying data products in commercial settings.
  • Strong business acumen; you get how data is used, not just how it's built.
  • Passion for working directly with clients and solving complex, high-value problems.
  • Comfortable operating across both technical and commercial teams.
  • Experience in cloud infrastructure, software engineering, or analytics frameworks a plus.
  • A curious mind—especially if you're excited to learn about industries like shipping and commodities trading.

Benefits


What We Offer:

  • Generous compensation with additional performance incentives.
  • Coverage under the company's collective health insurance plan.
  • Opportunity to work alongside experienced people with deep knowledge in software engineering, data science & shipping business who are always eager to mentor.
  • Signal's hybrid work policy currently includes 6 working days at premises per month
  • 2-4 weeks of onboarding training to prepare you for your new role, having the opportunity to meet about 30 trainers while diving deep into our products and/or the shipping world.
  • Career growth opportunities and a structured development discussion every 4 months.
  • Personal learning budget for training, seminars, conferences (750 to 2000 EUR annually depending on seniority).
  • Regular team bonding events and activities.

Seniority level

  • Seniority levelMid-Senior level

Employment type

  • Employment typeFull-time

Job function

  • IndustriesSoftware Development

Referrals increase your chances of interviewing at Signal by 2x

Get notified about new Data Scientist jobs in London, England, United Kingdom.

London, England, United Kingdom 2 weeks ago

London, England, United Kingdom 2 days ago

London, England, United Kingdom 5 days ago

London, England, United Kingdom 3 days ago

Greater London, England, United Kingdom 3 weeks ago

London, England, United Kingdom 1 day ago

London, England, United Kingdom 4 weeks ago

London, England, United Kingdom 2 days ago

London, England, United Kingdom 1 week ago

London, England, United Kingdom 3 weeks ago

London, England, United Kingdom 1 week ago

Data Scientist – Data Science Analytics and Enablement (DSAE)

London, England, United Kingdom 2 weeks ago

London, England, United Kingdom 1 day ago

Data Scientist, Internship, United Kingdom - BCG X

London, England, United Kingdom 3 days ago

London, England, United Kingdom 2 days ago

Greater London, England, United Kingdom 1 week ago

Woking, England, United Kingdom 2 days ago

London, England, United Kingdom 2 weeks ago

London, England, United Kingdom 5 days ago

London, England, United Kingdom 4 weeks ago

London, England, United Kingdom 5 days ago

Data Scientist – Experimentation & Measurement

London, England, United Kingdom 2 weeks ago

London, England, United Kingdom 1 week ago

London, England, United Kingdom £65,000.00-£75,000.00 1 month ago

London, England, United Kingdom 6 days ago

London, England, United Kingdom 6 days ago

London, England, United Kingdom 1 week ago

London, England, United Kingdom 1 week ago

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.