National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Finance Data Scientist

Birmingham
7 months ago
Applications closed

Related Jobs

View all jobs

Credit - Data Scientist

Senior Data Scientist - Consumer Lending

Staff Data Scientist

Senior Data Scientist - Consumer Lending

Senior Data Scientist - Consumer Lending

Senior Data Scientist - Consumer Lending

Join us as a Finance Data Scientist

In this role, you’ll drive and embed the design and implementation of data science tools and methods, which harness our data to drive market-leading purpose customer solutions

Day-to-day, you’ll act as a subject matter expert and articulate advanced data and analytics opportunities, bringing them to life through data visualisation

If you’re ready for a new challenge, and are interested in identifying opportunities to support external customers by using your data science expertise, this could be the role for you

What you’ll do

We’re looking for someone to understand the requirements and needs of our business stakeholders. You’ll develop good relationships with them, form hypotheses, and identify suitable data and analytics solutions to meet their needs and to achieve our business strategy.

You’ll be working on the development and maintenance of a suite of cash flow and behavioural models, evaluating and improving business processes using scientific rigour and statistical methods. You’ll be supporting and collaborating with multidisciplinary teams of data engineers and analysts focusing on financial modelling, portfolio analysis and product profitability for pricing and strategy.

You’ll also be responsible for:

Proactively bringing together statistical, mathematical, machine-learning and software engineering skills to consider multiple solutions, techniques, and algorithms

Implementing ethically sound models end-to-end and applying software engineering and a product development lens to complex business problems

Working with and leading both direct reports and wider teams in an Agile way within multi-disciplinary data to achieve agreed project and Scrum outcomes

Using your data translation skills to work closely with business stakeholders to define business questions, problems or opportunities that can be supported through advanced analytics

Selecting, building, training, and testing complex machine models, considering model valuation, model risk, governance, and ethics throughout to implement and scale models

The skills you’ll need

To be successful in this role, you’ll need evidence of project implementation and work experience gained in a data-analysis-related field as part of a multi-disciplinary team. We’ll also expect you to hold an undergraduate or a master’s degree in a quantitative discipline, or evidence of equivalent practical experience.

You’ll also need experience with statistical software, database languages, big data technologies, cloud environments and machine learning on large data sets. And we’ll look to you to bring the ability to demonstrate leadership, self-direction and a willingness to both teach others and learn new techniques.

Additionally, you’ll need:

Experience of deploying machine learning models into a production environment

Experience of articulating and translating business questions and using statistical techniques to arrive at an answer using available data

Effective verbal and written communication skills and the ability to adapt communication style to a specific audience

Extensive work experience, including expertise with statistical data analysis, such as linear models, multivariate analysis, stochastic models, and sampling methods

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.