Finance Data Scientist

Birmingham
1 year ago
Applications closed

Related Jobs

View all jobs

AI Data Scientist — Finance, Modelling & NLP (Hybrid UK)

Model Risk Data Scientist: AI/ML Validation & Automation

Hybrid Research Data Scientist: AI & ML for Finance

Contract Data Scientist: Commercial Analytics & Modeling

Geospatial Data Scientist

Geospatial Data Scientist

Join us as a Finance Data Scientist

In this role, you’ll drive and embed the design and implementation of data science tools and methods, which harness our data to drive market-leading purpose customer solutions

Day-to-day, you’ll act as a subject matter expert and articulate advanced data and analytics opportunities, bringing them to life through data visualisation

If you’re ready for a new challenge, and are interested in identifying opportunities to support external customers by using your data science expertise, this could be the role for you

What you’ll do

We’re looking for someone to understand the requirements and needs of our business stakeholders. You’ll develop good relationships with them, form hypotheses, and identify suitable data and analytics solutions to meet their needs and to achieve our business strategy.

You’ll be working on the development and maintenance of a suite of cash flow and behavioural models, evaluating and improving business processes using scientific rigour and statistical methods. You’ll be supporting and collaborating with multidisciplinary teams of data engineers and analysts focusing on financial modelling, portfolio analysis and product profitability for pricing and strategy.

You’ll also be responsible for:

Proactively bringing together statistical, mathematical, machine-learning and software engineering skills to consider multiple solutions, techniques, and algorithms

Implementing ethically sound models end-to-end and applying software engineering and a product development lens to complex business problems

Working with and leading both direct reports and wider teams in an Agile way within multi-disciplinary data to achieve agreed project and Scrum outcomes

Using your data translation skills to work closely with business stakeholders to define business questions, problems or opportunities that can be supported through advanced analytics

Selecting, building, training, and testing complex machine models, considering model valuation, model risk, governance, and ethics throughout to implement and scale models

The skills you’ll need

To be successful in this role, you’ll need evidence of project implementation and work experience gained in a data-analysis-related field as part of a multi-disciplinary team. We’ll also expect you to hold an undergraduate or a master’s degree in a quantitative discipline, or evidence of equivalent practical experience.

You’ll also need experience with statistical software, database languages, big data technologies, cloud environments and machine learning on large data sets. And we’ll look to you to bring the ability to demonstrate leadership, self-direction and a willingness to both teach others and learn new techniques.

Additionally, you’ll need:

Experience of deploying machine learning models into a production environment

Experience of articulating and translating business questions and using statistical techniques to arrive at an answer using available data

Effective verbal and written communication skills and the ability to adapt communication style to a specific audience

Extensive work experience, including expertise with statistical data analysis, such as linear models, multivariate analysis, stochastic models, and sampling methods

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.