Field Services Engineer

trg.recruitment
Greater London
10 months ago
Applications closed

Related Jobs

View all jobs

Data Science Consultant

AI/ML Software Engineer III — GenAI & NLP Pipelines

Data Engineering Lead

IT Data Engineer

IT Data Engineer

Data Engineer - Azure

Talent Associate at trg. - AI and Machine Learning Engineering

About the Role

An exciting opportunity for an experiencedField Service Engineerto work in a hands-on, outdoor role dealing with high-voltage electrical systems. You will be responsible for the installation, servicing, and maintenance of electrical systems, ensuring compliance with regulations and safety standards.

Key Responsibilities

  • Carry out servicing, fault finding, and repairs on electrical equipment.
  • Perform risk assessments and ensure compliance with health and safety regulations.
  • Ensure installations adhere to industry standards and regulations.
  • Work in a field-based capacity, interacting with the public when required.
  • Participate in an on-call rota (1 week in 4).

Essential Qualifications & Experience

  • JIB-recognised UK competency-based qualification
  • Electrotechnical Level 3 NVQ or a formal UK electrotechnical apprenticeship
  • ECS Card (Maintenance Electrician or Electrician)
  • IET 16th, 17th, or 18th Edition Wiring Regulations (BS7671:2018)
  • Full UK Driving License
  • Experience working in a field-based role with exposure to high-voltage systems

Additional Benefits

  • Company vehicle, tools, and uniform provided.
  • Competitive salary with bonus and on-call allowance.
  • Career progression opportunities in a growing industry.

Apply nowif you meet the qualifications and want to be part of a dynamic team in an evolving industry!

Seniority Level:Mid-Senior level

Employment Type:Full-time

Job Function:Information Technology, Engineering, and Customer Service

Industries:Electrical Equipment Manufacturing, Electric Power Generation, and Electric Power Transmission, Control, and Distribution

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.