EPSRC CDT Machine Learning Systems Fully-Funded PhD Programme

WiMLDS Inc
Edinburgh
3 weeks ago
Create job alert

This CDT develops researchers with expertise across the systems-ML stack. This makes a cohort-based programme vital, treating ML Systems as a holistic discipline. Cohort interaction, and integration, give students real experience across multiple systems, approaches and methodologies. Company engagement is an integral part of the programme with built-in internships alongside entrepreneurship training.


The PhD programme in Machine Learning Systems positions students for strong, ethically aware technical careers, developing the next generation of leaders. Students will develop foundational research skills in Computer Systems, Machine Learning, Hardware, Sensors and Control, Programming and Integrated Machine Learning Environments, AI Ethics, and Leadership and Entrepreneurship. At the end, all students will have extensive experience of real-world deployment and optimization of machine learning methods.


The CDT has a minimum of 10 fully-funded studentships available for September 2026 entry.


Studentships include stipend, fees and research costs for 4 years.


As a UKRI-funded CDT, application is open to all UK/EU/non-EU citizens providing they meet the university PhD entry requirements. However, the number of students with international fees status that can be recruited is restricted (about 3 per year).


Ideal Candidate

  • a strong degree or higher qualification in a relevant field (e.g. computer science, mathematics, engineering, physical sciences, economics or any other field where evidence is provided of sufficient computing and mathematical background)
  • solid experience of programming, machine learning methods and ideally deep learning environments (e.g. pytorch) or a computer systems background.

We are particularly interested in receiving applications from Female and Home applicant.


#J-18808-Ljbffr

Related Jobs

View all jobs

Postdoc at Oxford: machine learning & global health

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.