Enterprise Sales Executive

Wilson Grey
Nottingham
10 months ago
Applications closed

Related Jobs

View all jobs

Senior Manager, Forward-Deployed Data Science

Associate Director, Data Science/Gen AI Lead - ER&I

Associate Director, Data Science/Gen AI Lead - ER&I

Associate Director, Data Science/Gen AI Lead - ER&I

Associate Director, Data Science/Gen AI Lead - ER&I

Associate Director, Data Science/Gen AI Lead - ER&I

Enterprise Sales Executiveopportunity with a fast-growing AI startup. This is a remote role based in the UK.


  • Have you sold a highly technical SaaS or AI product?
  • Do the personas you've sold to include Data Scientists, Heads of Engineering and other technical stakeholders?
  • Have you exceeded ARR targets of £1mil?


If so, you will be a great fit for this role.


This position requires an experienced enterprise salesperson who has sold highly technical SaaS products or complex platforms, ideally with AI. You are someone who is skilled in guiding clients through cutting-edge technology and smashing your own sales targets.


Our client is an innovative tech company at the forefront of artificial intelligence transformation, empowering enterprises to unlock new possibilities through advanced AI and computer vision solutions.


As an Enterprise Sales Executive, you'll be a critical bridge between technical customers and our client’s AI solutions. You will take on a 360 sales role and directly engage with clients to understand their needs, deliver technical insights, and maximize the value of the platform.


This role combines sales skills, hands-on technical support and proactive customer education, enabling you to create a real impact for businesses adopting AI technology.


About the role:

  • End-to-end sales initially, from identifying prospects, lead generation, through demos, managing the deal and closing (you will supported by an SDR as the team grows)
  • Communicate directly with clients to understand their needs, propose solutions based on our client’s technology, provide technical guidance, and maximize platform benefits
  • Conduct meetings remotely and in person when appropriate
  • Run technical demos tailored to address customer challenges and goals, and provide sales team training on demos
  • Develop resources, conduct webinars, and create presentations and videos to inform customers about the client’s AI platform
  • Collaborate with R&D and Account Executives, and report on customer needs, market trends, and new product opportunities


About you:

  • Several years in technical B2B enterprise sales or a commercial sales engineer role selling to enterprises
  • Bachelor's degree, preferably in a technical field, or equivalent experience
  • Recent experience in a tech startup or high-growth scale-up
  • You enjoy the entire sales process, from initial prospect research through to closing deals
  • Demonstrable track record of closing deals and hitting sales targets of £1mil+ ARR
  • Technical background or have sold a complex product to a technical audience
  • Based in the UK full-time


On offer:

  • Base salary of £85k - £110k + Double OTE
  • Health Insurance
  • Gym membership
  • Flexible, remote working

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.