Enterprise Architect Lead, Data Science & AI

Cramond Bridge
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Lead Analyst - Data Science_ AI/ML & Gen AI - UK

Senior Lead Analyst - Data Science_ AI/ML & Gen AI - UK - Infosys

Associate Director, Data Science/Gen AI Lead - ER&I

Associate Director, Data Science/Gen AI Lead - ER&I

Associate Director, Data Science/Gen AI Lead - ER&I

Associate Director, Data Science/Gen AI Lead - ER&I

Join us as an Enterprise Architect Lead, Data Science & AI

Join a team that is shaping the future of the bank’s data science and AI architecture and governance and help us unlock the full potential of our data

You'll be defining the intentional architecture for your assigned scope in order to ensure that the current architecture being delivered by engineers best supports the enterprise and its long term strategy

With valuable exposure, you’ll be building and leveraging relationships with colleagues across the bank to ensure commercially focused decisions and to create long term value for the bank

What you'll do

We’re embarking on a new and exciting phase of the bank’s transformation agenda, data science and AI architecture play a crucial role in achieving our mission to simplify, reduce risk and enable customer engagement and personalisation. Supporting the development of architectures and roadmaps of innovative data solutions, leveraging data science and AI, is critical to driving simplification, improving data efficiency, and ensuring data risk stays within tolerance.

In this key role, you’ll be defining and communicating the current, resultant and target state architecture for your enterprise solutions using data science & AI. You’ll also be making sure that the architecture links to, and is informed by, our overall strategy and architecture, and produces the architecture outcomes.

We’ll look to you to influence the development of business strategies at an organisational level, identifying transformational opportunities for our businesses and technology areas associated with both new and existing technologies. You’ll manage and mentor a team of specialist and senior data architects dedicated to supporting architectures for solutions using data science and AI fostering a collaborative, high performance culture that encourages innovation.

As well as this, you’ll:

Translate architecture roadmaps into packages of work that allow frequent incremental delivery of value to be included in product backlog

Define, create and maintain architecture models, roadmaps, standards and outcomes, using architecture strategies to ensure alignment to adjacent and higher level model

Work closely with business owners, portfolio managers, product managers and release managers to define the target intentional architecture

Lead complex and technically challenging architectural transformations, coordinating design and platform teams across domains

Stay abreast of the commercial and emerging data technology offerings that may influence current and target Data Science and AI architectures and their governance

Seek out and utilise continuous feedback, fostering adaptive design and engineering practices to drive the collaboration of programmes and teams around a common technical vision

The skills you'll need

We’re looking for someone with a background in defining business and application architectures and roadmaps for data science and AI based solutions. You’ll bring expert knowledge of enterprise data architecture, solution data architecture, architecture for data science and AI with knowledge of industry architecture frameworks such as TOGAF or ArchiMate. 

In addition, you’ll be a thought leader of architecture for data science and AI solutions and enterprise design in the bank influencing business and technology teams. You’ll have excellent communication skills with the ability to clearly communicate complex technical concepts to colleagues up to senior leadership level, along with a good understanding of Agile methodologies with experience of working in an Agile team.

You’ll also have:

Experience of developing, syndicating and communicating architectures, designs and proposals for action

Experience of working with business solution vendors, technology vendors and products within the market

Experience as an enterprise architect with focus on architecture advisory along with experience in AI or ML and Data Science solutions and patterns

Experience with developing, data exploration, visualisation and statistical analysis technologies

Experience with developing, data exploration, visualisation and statistical analysis technologies

An understanding of neural networking, deep learning and LLM architectures

Knowledge of Data Science lifecycle, MLOps, model management and automation

Knowledge of data, architecture frameworks such as DAMA and DCAM as well as data related regulations such as GDPR, CCPA,PCI DSS and BCBS 239

Architecture knowledge of Tableau, AWS data stack, SageMaker, Python, EMR or Spark, Kafka and Snowflake

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.