Engineering Manager - MLOps & Analytics

Canonical
London
8 months ago
Create job alert

The role of an Engineering Manager at Canonical

As an Engineering Manager at Canonical, you must be technically strong, but your main responsibility is to run an effective team and develop the colleagues you manage. You will develop and review code as a leader, while at the same time staying aware of that the best way to improve the product is to ensure that the whole team is focused, productive and unblocked.

You are expected to help them grow as engineers, do meaningful work, do it outstandingly well, find professional and personal satisfaction, and work well with colleagues and the community. You will also be expected to be a positive influence on culture, facilitate technical delivery, and regularly reflect with your team on strategy and execution.

You will collaborate closely with other Engineering Managers, product managers, and architects, producing an engineering roadmap with ambitious and achievable goals.

We expect Engineering Managers to be fluent in the programming language, architecture, and components that their team uses, in this case popular open-source machine learning tools like Kubeflow, MLFlow, and Feast.

Code reviews and architectural leadership are part of the job. The commitment to healthy engineering practices, documentation, quality and performance optimisation is as important, as is the requirement for fair and clear management, and the obligation to ensure a high-performing team.

Location:This is a Globally remote role.

What your day will look like

Manage a distributed team of engineers and its observability portfolio Organize and lead the team’s processes in order to help it achieve its objectives Conduct one-on-one meetings with team members Identify and measure team health indicators Interact with a vibrant community Review code produced by other engineers Attend conferences to represent Canonical and its MLOps solutions Mentor and grow your direct reports, helping them achieve their professional goals Work from home with global travel for 2 to 4 weeks per year for internal and external events 

What we are looking for in you

A proven track record of professional experience of software delivery Professional python development experience, preferably with a track record in open source A proven understanding of the machine learning space, its challenges and opportunities to improve Experience designing and implementing MLOps solutions An exceptional academic track record from both high school and preferably university Willingness to travel up to 4 times a year for internal events

Additional skills that you might also bring

The following skills may be helpful to you in the role, but we don't expect everyone to bring all of them.

Hands-on experience with machine learning libraries, or tools. Proven track record of building highly automated machine learning solutions for the cloud. Experience with building machine learning models Experience with container technologies (Docker, LXD, Kubernetes, etc.) Experience with public clouds (AWS, Azure, Google Cloud) Experience in the Linux and open-source software world Working knowledge of cloud computing Passionate about software quality and testing Experience working on a distributed team on an open source project -- even if that is community open source contributions. Demonstrated track record of Open Source contributions

What we offer you

We consider geographical location, experience, and performance in shaping compensation worldwide. We revisit compensation annually (and more often for graduates and associates) to ensure we recognise outstanding performance. In addition to base pay, we offer a performance-driven annual bonus. We provide all team members with additional benefits, which reflect our values and ideals. We balance our programs to meet local needs and ensure fairness globally.

Distributed work environment with twice-yearly team sprints in person - we’ve been working remotely since ! Personal learning and development budget of USD 2, per year Annual compensation review Recognition rewards Annual holiday leave Maternity and paternity leave Employee Assistance Programme Opportunity to travel to new locations to meet colleagues from your team and others Priority Pass for travel and travel upgrades for long haul company events

Related Jobs

View all jobs

Engineering Manager

Engineering Manager - Data Engineering

Data Engineering Manager

Data Engineering Manager

Data Engineering Manager

Data Engineering Manager

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!