Engineer – Weights Engineering

Millom
1 week ago
Create job alert

Job Title: Weights Engineer

Location: Barrow-in-Furness. We offer a range of hybrid and flexible working arrangements – please speak to your recruiter about the options for this particular role

Salary: Circa £37,000 depending on skills and experience

What you’ll be doing:

You will be utilising CAD systems to produce detailed weight estimations

Be responsible for undertaking submarine unit surveys

Undertaking physical weights on supplier sites

You will be managing and supervising weights events at our Barrow-in-Furness site

Managing data collation during ballast installations

Your skills and experiences:

Essential:

Hold a degree in a Technology based discipline

Have good experience using Microsoft Excel to handle large data sets

Desirable:

Have experience using VBA and Python for data analysis

Preferable experience of working with or around data visualisation

Experience using complex mechanical or electronical systems

Benefits:

As well as a competitive pension scheme, BAE Systems also offers employee share plans, an extensive range of flexible discounted health, wellbeing and lifestyle benefits, including a green car scheme, private health plans and shopping discounts – you may also be eligible for an annual incentive.

The Weight Engineering team:

The Weight Engineering Team are a multi-disciplinary Team of Engineers and Data Scientists who estimate, collate and present mass properties data for a number of multi-billion-pound submarine programmes. Together, they are a specialist team that play a critical role in the whole boat design and assuring whole boat safety. We offer relocation support packages across all Submarines roles, subject to meeting eligibility criteria.

Why BAE Systems?

This is a place where you’ll be able to make a real difference. You’ll be part of an inclusive culture that values diversity, rewards integrity, and merit, and where you’ll be empowered to fulfil your potential. We welcome candidates from all backgrounds and particularly from sections of the community who are currently underrepresented within our industry, including women, ethnic minorities, people with disabilities and LGBTQ+ individuals. We also want to make sure that our recruitment processes are as inclusive as possible. If you have a disability or health condition (for example dyslexia, autism, an anxiety disorder etc.) that may affect your performance in certain assessment types, please speak to your recruiter about potential reasonable adjustments.

Please be aware that many roles at BAE Systems are subject to both security and export control restrictions. These restrictions mean that factors such as your nationality, any nationalities you may have previously held, and your place of birth can restrict the roles you are eligible to perform within the organisation. All applicants must as a minimum achieve Baseline Personnel Security Standard. Many roles also require higher levels of National Security Vetting where applicants must typically have 5 to 10 years of continuous residency in the UK depending on the vetting level required for the role, to allow for meaningful security vetting checks.

Closing Date: 16th May 2025

We reserve the right to close this vacancy early if we receive sufficient applications for the role. Therefore, if you are interested, please submit your application as early as possible.

#LI-CB1

#LI-Hybrid

Related Jobs

View all jobs

Computer Vision Engineer - (Remote - UK, Ireland and Hungary)

Data Engineer

Software Engineer (Junior)

Software Engineer (Junior)

Data Engineer

Analytics Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!