Energy Forecast Lead

Dallington, West Northamptonshire
6 days ago
Create job alert

Energy Forecast Delivery Lead required for an industry-leading client. You will be based in Northampton, London, or Manchester, and also be able to work from home 2-3 days a week.

This role offers the opportunity to help organisations set accurate carbon and fiscal budgets, purchase REGO's, and secure Power Purchase Agreements as part of their journey to Net Zero. The position involves supporting stakeholders by building and monitoring energy models that adapt to changes in the client's estate.

Energy Forecast Delivery Lead Remuneration

  • £57,000 - £65,000

  • Full holiday package

  • Pension scheme

  • Buying and selling holidays scheme – up to 5 per year

  • Virtual GP appointments - for you and your household

  • Flexible lifestyle benefits – critical illness insurance, dental treatment, affordable tech plus many more choices

  • Employee discounts & cashback platform – discounts from thousands of retailers.

  • Cycle to work scheme - save 30-47% on a brand new bicycle.

  • Recognition and Reward schemes – cash prizes

  • Volunteering - 1 fully paid day to volunteer towards charitable work

  • Free eye tests and £100 towards prescription glasses

  • Annual Wellbeing Health Check

    Energy Forecast Delivery Lead Duties

  • Understand clients' real estate strategies, including energy generation and reduction goals.

  • Collaborate with energy managers, carbon consultants, and data teams to forecast future energy consumption.

  • Build and enhance forecasting models based on historical data and key variables.

  • Develop and deliver energy consumption forecasting models at estate and meter levels.

  • Monitor model accuracy and adapt them to changing client estates and needs.

  • Generate detailed reports on consumption forecasts, carbon footprints, and energy performance.

  • Support system development by incorporating machine learning and automation technologies into forecasting models.

    Energy Forecast Delivery Lead Requirements

  • Experience in energy consumption analysis and data modeling.

  • Proficiency in Microsoft Excel and mathematical software (e.g., Matlab, R, Python).

    Knowledge, Skills & Experience

  • CMVP / PMVA qualification preferred.

  • Experience in energy measurement and verification.

  • Ability to interpret energy data and convert it into actionable future forecasts

Related Jobs

View all jobs

TEST - Data Analyst - DO NOT APPLY

Senior Backend Engineer - Data Engineer

Software Engineer

Data Engineer (Databricks & Azure) - Clean Energy

Python Developer

Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.