Econometrician / Data Scientist

London
8 months ago
Applications closed

Econometrician / Data Scientist

London (Hybrid working 3 office days per week)

Salary DOE £40,000-£45,000

Additional Benefits: Gym Membership, Pension and yearly bonus

Job Reference: J12950

We're excited to be hiring for a unique opportunity to join a fast-growing, independent marketing effectiveness agency that genuinely puts its people first.
This is a chance for someone who wants to be a bigger fish in a smaller sea to step into a role where you can truly make your mark, have real influence, and accelerate your career growth as we continue to scale. With a loyal and diverse client base, and a culture built on support and empowerment, you'll be part of a team where your ideas are heard and your impact is recognised.

We're looking for a motivated and capable Econometrician / Data Scientist with 2-3 years of hands-on experience in Marketing Mix Modelling (MMM). Experience within the FMCG sector would be a bonus, but it's not essential.

Roles and Responsibilities
• This role is well-suited for candidates who have a strong analytical mindset and prefer working behind the scenes with data
• Leading the modelling process from briefing, data exploration, and variable selection through to model building, interpretation, and being involved in the presentation of results (interim and final debriefs will be presented by the Account Director)
• Creating clear and insightful output decks for both internal stakeholders and client presentations

Experience & Skills Required
• Strong econometric modelling skills using tools such as R, Python, or other statistical software packages (e.g., EViews, SAS)
• Experience with model validation, diagnostics, and performance metrics
• Ability to handle large datasets, clean and transform raw data, and apply advanced statistical techniques such as regression, lag structures, adstock, saturation, and interaction effects
• The successful candidate will be expected to take full ownership of modelling projects, from raw data ingestion through to final model delivery and client-ready outputs, with minimal supervision.

If this sounds like you then please apply!
Alternatively, you can refer a friend or colleague by taking part in our fantastic referral schemes! If you have a friend or colleague who would be interested in this role, please refer them to us. For each relevant candidate that you introduce to us (there is no limit) and we place, you will be entitled to our general gift/voucher scheme

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.