Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Earth Observation Analyst

Dublin
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Earth Observation Data Scientist for Oil & Gas

Senior Data Scientist - Earth Observation

Senior Data Scientist - Earth Observation

Senior Geospatial Data Scientist

Senior Geospatial Data Scientist

Senior Data Scientist, Earth Observation – London

Job Title: Earth Observation (EO) Data Scientist
Location: Ireland (Remote, with occasional client meetings and in-person training)
Must reside in Ireland

Salary: €55,000 - €60,000 per annum (depending on experience)
Job Type: Full-time
About the Role
Our client is seeking an experienced Earth Observation (EO) Data Scientist to join their team. This role is ideal for a professional with a strong background in EO data processing, machine learning applications, and cloud-based EO tools. The position is remote, but the candidate must be based in Ireland and available for occasional client meetings and training sessions.

Key Responsibilities

Process and analyze Earth Observation data, including optical and radar datasets.
Utilise common EO Python libraries such as GDAL, Pandas, and GeoPandas for data handling and analysis.
Develop and apply AI and machine learning models for EO applications.
Work with cloud-based EO platforms such as DIAS and Google Earth Engine (GEE).
Automate workflows and conduct time-series analysis for EO projects.
Develop and maintain scripts for Linux environments using Bash scripting.
Collaborate with clients and stakeholders to understand project requirements and deliver tailored solutions.
Document methodologies and findings clearly for both technical and non-technical audiences. Required Qualifications & Experience

Master’s degree in Earth Observation (EO), Geographic Information Systems (GIS), or a closely related field.
At least 4 years of industry experience working with EO data and processing techniques.
Strong knowledge of optical and radar data processing methods.
Experience in AI and machine learning model development and implementation.
Hands-on experience with cloud-based EO tools such as DIAS or Google Earth Engine (GEE).
Proficiency in Linux operating systems and basic Bash scripting.
Strong problem-solving skills and ability to work independently.
Excellent written and spoken English skills.
Must have permission to reside and work in Ireland (onshore applicants only). Benefits

Annual Leave: 22 days of holiday leave, increasing to 23 days with time served.
Additional Leave: Option to purchase extra annual leave.
Flexible Working: Work-from-home flexibility (full-time or part-time).
Family Benefits: Enhanced maternity and paternity benefits.
Pension Scheme: Employer-contributed pension plan.
Employee Assistance Programme (EAP):
Access to a health & wellness platform, including a digital gym, nutrition guides, and well-being tutorials.
EAP services for employees and their partners, including counselling support.
Health Insurance: Company-sponsored health insurance covering optical, dental, physiotherapy, and more.
Cycle to Work Scheme: Option to participate in the cycle-to-work programme.
Professional Development: Continuous professional development opportunities. Eligibility
Candidates must have valid permission to work and reside in the European Union and the Republic of Ireland. The candidate must currently reside on the island of Ireland for this position.
If you meet the criteria and are passionate about Earth Observation and geospatial analytics, we encourage you to apply

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.