Earth Observation Analyst

Dublin
3 weeks ago
Applications closed

Related Jobs

View all jobs

Geospatial Data Engineer

Engineering Manager

Electric Propulsion Systems Engineer

GIS Technical Architect

Technical Account Manager (Sweden)

Programmer/Analyst, Ship With Amazon

Job Title: Earth Observation (EO) Data Scientist
Location: Ireland (Remote, with occasional client meetings and in-person training)
Must reside in Ireland

Salary: €55,000 - €60,000 per annum (depending on experience)
Job Type: Full-time
About the Role
Our client is seeking an experienced Earth Observation (EO) Data Scientist to join their team. This role is ideal for a professional with a strong background in EO data processing, machine learning applications, and cloud-based EO tools. The position is remote, but the candidate must be based in Ireland and available for occasional client meetings and training sessions.

Key Responsibilities

Process and analyze Earth Observation data, including optical and radar datasets.
Utilise common EO Python libraries such as GDAL, Pandas, and GeoPandas for data handling and analysis.
Develop and apply AI and machine learning models for EO applications.
Work with cloud-based EO platforms such as DIAS and Google Earth Engine (GEE).
Automate workflows and conduct time-series analysis for EO projects.
Develop and maintain scripts for Linux environments using Bash scripting.
Collaborate with clients and stakeholders to understand project requirements and deliver tailored solutions.
Document methodologies and findings clearly for both technical and non-technical audiences. Required Qualifications & Experience

Master’s degree in Earth Observation (EO), Geographic Information Systems (GIS), or a closely related field.
At least 4 years of industry experience working with EO data and processing techniques.
Strong knowledge of optical and radar data processing methods.
Experience in AI and machine learning model development and implementation.
Hands-on experience with cloud-based EO tools such as DIAS or Google Earth Engine (GEE).
Proficiency in Linux operating systems and basic Bash scripting.
Strong problem-solving skills and ability to work independently.
Excellent written and spoken English skills.
Must have permission to reside and work in Ireland (onshore applicants only). Benefits

Annual Leave: 22 days of holiday leave, increasing to 23 days with time served.
Additional Leave: Option to purchase extra annual leave.
Flexible Working: Work-from-home flexibility (full-time or part-time).
Family Benefits: Enhanced maternity and paternity benefits.
Pension Scheme: Employer-contributed pension plan.
Employee Assistance Programme (EAP):
Access to a health & wellness platform, including a digital gym, nutrition guides, and well-being tutorials.
EAP services for employees and their partners, including counselling support.
Health Insurance: Company-sponsored health insurance covering optical, dental, physiotherapy, and more.
Cycle to Work Scheme: Option to participate in the cycle-to-work programme.
Professional Development: Continuous professional development opportunities. Eligibility
Candidates must have valid permission to work and reside in the European Union and the Republic of Ireland. The candidate must currently reside on the island of Ireland for this position.
If you meet the criteria and are passionate about Earth Observation and geospatial analytics, we encourage you to apply

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.