National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Director, QA Data Analytics

Abbott
Witney
3 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist

Director of Machine Learning

Director of Data Engineering | London | Remote

Director-Data Science and Analytics

Director (Data Science)

Director of Machine Learning

The Opportunity

Abbott Diabetes Care (ADC) is looking for a Director of QA Data Analytics. This person will be responsible for defining and executing the global QA Systems and Data Analytics strategy to ensure a sustainable global model can be delivered through established governance, standards, and validated data analytic tools. They will partner with cross-functional business leaders and key stakeholders to identify system and data analytic opportunities that will reduce compliance risk, provide early signals to minimize business impact to our products, drive global standardization, and improve efficiencies by minimizing non-value-added activities.

This individual will utilize AI and Machine Learning technologies to unify and enhance our systems, driving innovation and efficiency throughout the global Quality organization.

What You'll Work OnDevelop and manage the QA Systems and Data Analytics strategy and roadmap for ADC Quality Organization. Effectively communicate the analytics approach and how it will meet and address objectives to business partners and leaders Assure the quality systems and data analytic tools are in compliance with Corporate and Division policies and procedures to support quality decision making and internal/external audits Collaborate with key stakeholders to understand business problems to implement scalable and sustainable solutions utilizing cutting-edge technologies and tools Design, create, test, and implement complex models that drive analytical solutions throughout the quality organization that provide actionable insights, identify trends, and measure performance Design, build, and implement systems and tools for collecting, cleaning, and storing appropriate data to support statistical models and business analysis Stay abreast of developments at the intersection of data science, technology, and business relevant to the company and drive business innovation through analytics Determines end results company needs to accomplish, sets objectives to achieve end results, and determines how objectives will be achieved Establishes operating objectives and functional policies, usually through membership on the senior executive team Defines entire Quality & Operations Digital Framework (see below) and our data visualization needs across manufacturing, post market complaints and customer insights in conjunction with our operations colleagues. This framework will have global impact across the manufacturing and quality organization. Quality Digital Framework: Establish Data Governance Program for data & analytic initiatives to enable One Quality System, Safeguard and Industry 4.0 Establish Data Management to empower continuous improvement and provide a primary source of truth, empowering insights. Build automated analysis and reporting of key performance metrics, reducing manual reporting and data compilation. Build a Data Catalog with prioritized datasets from systems used in manufacturing, quality and ERP, reducing data acquisition time. Generative AI and Machine Learning assessments Increase use of our digital systems to maximize intelligent solutions and increase quality complianceRequired QualificationsBachelor's degree in Operations Management, Data Engineering, Data Science, Business Analytics, or related field 16+ years of relevant industry experience

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.