Director of Artificial Intelligence - Manufacturing & Industrial

Birmingham
7 months ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Scientist

Data Analyst and Systems Implementation Owner

Senior Data Engineer

Data Analyst

Data Analyst and Systems Implementation Owner

Data Analyst and Systems Implementation Owner

Director of Artificial Intelligence – Manufacturing & Industrial Systems

We’re representing a global manufacturing group investing heavily in AI and data-driven transformation. With a footprint across automotive, aerospace, and precision engineering, the business is embedding AI across predictive maintenance, process automation, and real-time analytics.

As they scale, they’re seeking a Director of Artificial Intelligence to drive enterprise-wide AI integration – from proof-of-concept to full deployment – working cross-functionally across operations, supply chain, and executive leadership.

Key Responsibilities:



Own and lead the AI strategy across industrial applications, driving long-term innovation and commercial impact.

*

Build and manage a high-performing AI team including Data Scientists, ML Engineers, and external partners.

*

Collaborate with manufacturing, engineering, and C-suite leaders to identify business-critical AI use cases.

*

Oversee AI/ML model development, deployment, and lifecycle management across complex manufacturing systems.

*

Lead vendor selection, tech stack decisions, and budget for AI transformation.

Experience Required:

*

Proven leadership in AI within manufacturing, industrial automation, or automotive environments.

*

Hands-on understanding of ML, deep learning, computer vision, or time-series data analytics.

*

Strong background with tools like Python, TensorFlow, PyTorch, and data pipeline architecture.

*

Experience delivering AI at scale — from concept through implementation and post-deployment optimization.

*

Excellent stakeholder management across technical and non-technical teams.

What’s on Offer:

*

Strategic global leadership role within a business committed to AI-led transformation.

*

Opportunities for board-level interaction and influence.

*

Competitive salary + long-term incentives + autonomy to drive innovation.

*

Career-defining projects that push the boundaries of smart manufacturing.

Apply Today
Ready to transform industrial performance through AI? Submit your CV and we’ll be in touch for a confidential discussion. Only applicants with demonstrable AI project experience in a commercial environment will be considered

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.