Director - Head of AI - Audit Technology

KPMG
Glasgow
6 months ago
Applications closed

Related Jobs

View all jobs

Director of Product - City of London

Director of Data Science

Director, Data Engineering Solutions - Growth

Product Director - Digital Health

Partner - AI/ML & Data Science

Senior Director Artificial Intelligence/Machine Learning

The Role

 

We’re looking for an experienced Head of AI to join the Audit technology team.

 

The individual in this role will be instrumental in transforming the audit function by leveraging AI technologies to streamline processes, enhance audit quality and provide valuable insights.

 

The individual will report to the Head of Analytics & AI.

 

Responsibilities

 

Development & implementation of an AI strategy for the UK audit business, working in collaboration with the other KPMG UK functions and the global Audit organisation. Lead from the front as a hands-on subject matter expert, architecting and crafting scalable solutions, and driving data excellence across the organisation. Collaborate with stakeholders and project managers to turn business goals into scalable technical solutions, delivering value for thousands of KPMG auditors. Oversee the AI model lifecycle, including training, monitoring and optimisation. Coach and mentor our team as we build production-grade data and machine learning solutions. Build and deploy end to end ML models and leverage metrics to support predictions, recommendations, search, and growth strategies. Develop and execute a product roadmap for AI applications in audit, in alignment with the overall business strategy. Ensure that AI solutions are built responsibly and ethically, aligned with KPMG’s Values. Effectively manage relationships with key technology alliance partners, ensuring value for money. Stay abreast of the latest AI and emerging technologies, proactively educating the business on the art of the possible and generating new ideas. Develop thought leadership in the application of AI within Audit, helping to strengthen KPMG’s brand.

 

Experience & skills

 

Bachelor’s degree in engineering, computer science or a related quantitative field. Minimum of 5 years of hands-on experience designing and implementing AI solutions at scale, with at least 3 years in a leadership role. Significant expertise in AI/ML fundamentals. Strong background in software engineering, data engineering and data platforms, with a track record of overseeing full-stack development and delivering production-grade solutions. Up-to-date knowledge of, and experience with, AI/ML technologies and their trends, including various libraries and tools (e.g. Azure AI/ML Studio, Azure OpenAI, Databricks, Python, langchain, Microsoft Semantic Kernel etc). Experience of implementing production-grade generative AI solutions, with knowledge of advanced generative AI concepts including prompt engineering, retrieval augmented generation, agents with skills/tools/functions, chains/planners, and LLM model evaluation. Knowledge of how products work, scale and perform. Expertise with cutting edge technologies such as transfer learning, unsupervised feature generation, meta-learning, generative text models, computer vision, sensor fusion, or reinforcement learning. Advanced data science and mathematical skills (e.g. PhD in computational modelling, machine learning, statistics, computer science). Experience with modern databases, cloud environments, and data ecosystems. Experience defining and leading large-scale projects with multiple stakeholders. Experience within a leadership role where you have proven success with building and maintaining teams.

 

People & Culture

 

Embrace and embed our culture ambition of high challenge, high support which is grounded in Our Values. Operate with a curious and sceptical mindset ensuring that this is embedded in your everyday work. Actively lead and embed a coaching culture to get the best out of others in an environment where everyone in the team feels empowered to speak up or challenge where appropriate. Be inclusive and embrace the opportunity to work with other teams within Audit and across the firm in an integrated way. Have a sense of community, purpose, and fun.

 

#LI-AB1

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Winning Cover Letter for Machine Learning Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for machine learning jobs with this proven 4-paragraph structure. Ideal for entry-level candidates, career switchers, and professionals looking to advance in the machine learning sector. When applying for a machine learning job, your cover letter is a vital part of your application. Machine learning is an exciting and rapidly evolving field, and your cover letter offers the chance to demonstrate your technical expertise, passion for AI, and your ability to apply machine learning techniques to solve real-world problems. Writing a cover letter for machine learning roles may feel intimidating, but by following a clear structure, you can showcase your strengths effectively. Whether you're just entering the field, transitioning from another role, or looking to advance your career in machine learning, this article will guide you through a proven four-paragraph structure. We’ll provide practical tips and sample lines to help you create a compelling cover letter that catches the attention of hiring managers in the machine learning job market.

Veterans in Machine Learning: A Military‑to‑Civilian Pathway into AI Careers

Introduction Artificial intelligence is no longer relegated to sci‑fi films—it underpins battlefield decision‑support, fraud detection, and even supermarket logistics. The UK Government’s 2025 AI Sector Deal forecasts an additional £200 billion in GDP by 2030, with machine‑learning (ML) engineers cited as the nation’s second most in‑demand tech role (Tech Nation 2024). The Ministry of Defence’s Defence AI Strategy echoes that urgency, earmarking £1.6 billion for FY 2025–28 to embed ML into planning, logistics, and autonomous systems. If you have ever tuned a radar filter, plotted artillery trajectories, or sifted sensor data for actionable intel, you have already worked with statistical modelling—the backbone of machine learning. This guide shows UK veterans how to reframe military experience for ML roles, leverage MoD transition funding, and land high‑impact positions building the models shaping tomorrow’s defence and commercial landscapes. Quick Win: Bookmark our live board for Machine‑Learning Engineer roles to see who’s hiring today.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.