Devops Engineer - Perm (FTC) - Hybrid

London
9 months ago
Applications closed

Related Jobs

View all jobs

Azure DevOps Engineer — Cloud, Kubernetes & MLOps

MLOps Engineer – Remote Production ML Deployments

Azure/Databricks Data Engineer

Senior Data Scientist

Senior Data Engineer

AWS Cloud Data Engineer — Pipelines, ETL & DevOps

Devops Engineer - Perm (FTC) - Hybrid

Role - Devops Engineer

Industry - Automotive

Type - Fixed term contract (3 - 6 months)

Rate - £70,000 - £75,000 per annum, pro rata

Location - Hybrid, 50% of the month in the office (London, Victoria)

Spec -

Purpose

Hands-on DevOps Engineer with strong experience in Azure infrastructure and Terraform to enhance, automate, and support a cloud-native data platform. This hybrid role will be responsible for advancing our Infrastructure as Code (IaC) strategy for Azure Synapse, Blob Storage, and surrounding services while enabling secure, monitored, and scalable environments.
You will work alongside platform engineers, data engineers, and application teams to streamline infrastructure provisioning, enhance DevOps pipelines, and support deployment processes for integration components Skills

Terraform (Azure Provider) - solid hands-on experience with modules, state handling, and environment design.
Azure Synapse Analytics - workspace setup, pipeline orchestration, data movement components.
Azure Blob Storage - configuration, access control, and integration.
Azure AD / Entra ID - external user setup, access roles, security groups.
Comfortable with cloud-hosted app deployment integrations (e.g., C#, Blazor).
Good familiarity with SQL Server environments.
DevOps & Automation
Experience with CI/CD pipelines in Azure DevOps.
Familiarity with YAML pipelines and automated release workflows.
Exposure to monitoring tools (Azure Monitor, Log Analytics, or third-party)
Experience with secure data movement and scheduled refresh automation (e.g., via Synapse Triggers, Azure Automation).
Awareness of cost-optimization, telemetry, and observability best practices in Azure environments.

Preferred Qualifications

Microsoft Certifications: AZ-400 (DevOps), AZ-104 (Admin), or equivalent.

Main Duties

Infrastructure & Platform Automation
Extend and improve Terraform-based infrastructure automation for:
Azure Synapse: Workspaces, SQL Pools, Pipelines, Linked Services, Triggers.
Azure Blob Storage: Containers, lifecycle rules, access policies, secure access patterns.
Azure Web Apps and additional cloud services where needed.
Maintain and enhance IaC for RBAC, Entra ID (Azure AD), and secure external access.
Support flexible deployments and environment replication across dev/test/prod.
DevOps & Deployment Automation
Build and maintain CI/CD pipelines using Azure DevOps for infrastructure and application deployment.
Ensure consistent provisioning of environments using pipelines and IaC.
Support integration of cloud-hosted apps (e.g., C# / Blazor front-ends) into provisioned infrastructure.
Coordinate deployment of pre-scripted T-SQL objects .
Identity & Security Configuration
Manage secure access for internal and external users using Azure AD / Entra ID B2B.
Automate setup of roles, groups, linked services, and data access for services like SQL DB, Blob Storage, SFTP.

GCS is acting as an Employment Agency in relation to this vacancy

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.