Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Devops Engineer - Perm (FTC) - Hybrid

London
4 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer (Data Migrations)

Machine Learning Engineer

Senior Data Engineer

Data Engineer

Data Engineer

Data Scientist

Devops Engineer - Perm (FTC) - Hybrid

Role - Devops Engineer

Industry - Automotive

Type - Fixed term contract (3 - 6 months)

Rate - £70,000 - £75,000 per annum, pro rata

Location - Hybrid, 50% of the month in the office (London, Victoria)

Spec -

Purpose

Hands-on DevOps Engineer with strong experience in Azure infrastructure and Terraform to enhance, automate, and support a cloud-native data platform. This hybrid role will be responsible for advancing our Infrastructure as Code (IaC) strategy for Azure Synapse, Blob Storage, and surrounding services while enabling secure, monitored, and scalable environments.
You will work alongside platform engineers, data engineers, and application teams to streamline infrastructure provisioning, enhance DevOps pipelines, and support deployment processes for integration components Skills

Terraform (Azure Provider) - solid hands-on experience with modules, state handling, and environment design.
Azure Synapse Analytics - workspace setup, pipeline orchestration, data movement components.
Azure Blob Storage - configuration, access control, and integration.
Azure AD / Entra ID - external user setup, access roles, security groups.
Comfortable with cloud-hosted app deployment integrations (e.g., C#, Blazor).
Good familiarity with SQL Server environments.
DevOps & Automation
Experience with CI/CD pipelines in Azure DevOps.
Familiarity with YAML pipelines and automated release workflows.
Exposure to monitoring tools (Azure Monitor, Log Analytics, or third-party)
Experience with secure data movement and scheduled refresh automation (e.g., via Synapse Triggers, Azure Automation).
Awareness of cost-optimization, telemetry, and observability best practices in Azure environments.

Preferred Qualifications

Microsoft Certifications: AZ-400 (DevOps), AZ-104 (Admin), or equivalent.

Main Duties

Infrastructure & Platform Automation
Extend and improve Terraform-based infrastructure automation for:
Azure Synapse: Workspaces, SQL Pools, Pipelines, Linked Services, Triggers.
Azure Blob Storage: Containers, lifecycle rules, access policies, secure access patterns.
Azure Web Apps and additional cloud services where needed.
Maintain and enhance IaC for RBAC, Entra ID (Azure AD), and secure external access.
Support flexible deployments and environment replication across dev/test/prod.
DevOps & Deployment Automation
Build and maintain CI/CD pipelines using Azure DevOps for infrastructure and application deployment.
Ensure consistent provisioning of environments using pipelines and IaC.
Support integration of cloud-hosted apps (e.g., C# / Blazor front-ends) into provisioned infrastructure.
Coordinate deployment of pre-scripted T-SQL objects .
Identity & Security Configuration
Manage secure access for internal and external users using Azure AD / Entra ID B2B.
Automate setup of roles, groups, linked services, and data access for services like SQL DB, Blob Storage, SFTP.

GCS is acting as an Employment Agency in relation to this vacancy

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.