Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

DevOps Engineer

Swansea
9 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer (Data Migrations)

Senior Data Engineer

Data Engineer

Data Engineer

Data Engineering Specialist

Data Engineer

It's no secret that traditional site reliability teams struggle to keep pace with manual monitoring, reactive troubleshooting, and labor-intensive deployments. The rise of AI presents a solution, but many companies fail to fully leverage its potential, resulting in systems that underperform and bottlenecks that stifle innovation. Data shows that 73% of companies struggle with deployment delays and operational downtime, primarily due to outdated processes and lack of AI-driven automation.

At IgniteTech, we are tackling these issues head-on by building AI-first cloud solutions that are designed to anticipate and prevent problems before they arise. We focus on integrating AI and machine learning into every facet of cloud infrastructure management, from automated monitoring systems to intelligent CI/CD pipelines. This approach creates environments that not only self-heal but also continuously evolve, reducing downtime, improving performance, and pushing the boundaries of what cloud services can do.

This isn’t your typical site reliability role, where you'd be reacting to problems and manually intervening when things go wrong. Here, you’ll lead the charge in building AI-enhanced monitoring systems that detect and resolve 95% of issues before they ever reach end users. You’ll also architect and manage AI-automated CI/CD pipelines that reduce deployment times by 30% while slashing manual interventions. The ideal candidate thrives in an AI-driven environment, is excited by the prospect of automation-first solutions, and enjoys pushing the envelope of cloud infrastructure design.

In this role, you’ll join a global team of innovators who are redefining cloud infrastructure. Your work will play a key role in our mission to deliver next-gen, AI-driven operational excellence. We’re seeking someone who is passionate about AI and ready to make a lasting impact on the future of cloud services. If that’s you, we encourage you to apply and be part of something revolutionary.

What you will be doing

Implementing AI-based monitoring services to automatically detect, predict, and resolve issues before they impact operations

Managing CI/CD pipelines with AI-driven automation to enhance deployment efficiency and reduce manual intervention

What you will NOT be doing

Focusing solely on manual monitoring, troubleshooting, and maintenance of systems; your goal will be to get AI to do these things for you

Key Responsibilities

Achieve seamless scalability and optimize performance for AI-powered cloud services, ensuring 99.99% uptime while delivering AI-enhanced software upgrades and customizations that meet clients' evolving needs

Candidate Requirements

3+ years of DevOps experience, including automation of CI/CD pipelines and infrastructure management

2+ years of experience with Amazon Web Services (AWS) or Google Cloud Platform (GCP)

Proficiency in AI and machine learning tools used for monitoring, automation, and predictive analytics (or strong willingness to learn and adapt to AI-driven technologies)

Strong programming and scripting skills, with experience in automating tasks and building AI-driven processes

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.