DevOps Engineer

Leicester
5 months ago
Applications closed

Related Jobs

View all jobs

Devops Engineer

Devops Engineer - Perm (FTC) - Hybrid

Data Engineer

Data Engineer

Data Engineer

Data Engineer

It's no secret that traditional site reliability teams struggle to keep pace with manual monitoring, reactive troubleshooting, and labor-intensive deployments. The rise of AI presents a solution, but many companies fail to fully leverage its potential, resulting in systems that underperform and bottlenecks that stifle innovation. Data shows that 73% of companies struggle with deployment delays and operational downtime, primarily due to outdated processes and lack of AI-driven automation.

At IgniteTech, we are tackling these issues head-on by building AI-first cloud solutions that are designed to anticipate and prevent problems before they arise. We focus on integrating AI and machine learning into every facet of cloud infrastructure management, from automated monitoring systems to intelligent CI/CD pipelines. This approach creates environments that not only self-heal but also continuously evolve, reducing downtime, improving performance, and pushing the boundaries of what cloud services can do.

This isn’t your typical site reliability role, where you'd be reacting to problems and manually intervening when things go wrong. Here, you’ll lead the charge in building AI-enhanced monitoring systems that detect and resolve 95% of issues before they ever reach end users. You’ll also architect and manage AI-automated CI/CD pipelines that reduce deployment times by 30% while slashing manual interventions. The ideal candidate thrives in an AI-driven environment, is excited by the prospect of automation-first solutions, and enjoys pushing the envelope of cloud infrastructure design.

In this role, you’ll join a global team of innovators who are redefining cloud infrastructure. Your work will play a key role in our mission to deliver next-gen, AI-driven operational excellence. We’re seeking someone who is passionate about AI and ready to make a lasting impact on the future of cloud services. If that’s you, we encourage you to apply and be part of something revolutionary.

What you will be doing

Implementing AI-based monitoring services to automatically detect, predict, and resolve issues before they impact operations

Managing CI/CD pipelines with AI-driven automation to enhance deployment efficiency and reduce manual intervention

What you will NOT be doing

Focusing solely on manual monitoring, troubleshooting, and maintenance of systems; your goal will be to get AI to do these things for you

Key Responsibilities

Achieve seamless scalability and optimize performance for AI-powered cloud services, ensuring 99.99% uptime while delivering AI-enhanced software upgrades and customizations that meet clients' evolving needs

Candidate Requirements

3+ years of DevOps experience, including automation of CI/CD pipelines and infrastructure management

2+ years of experience with Amazon Web Services (AWS) or Google Cloud Platform (GCP)

Proficiency in AI and machine learning tools used for monitoring, automation, and predictive analytics (or strong willingness to learn and adapt to AI-driven technologies)

Strong programming and scripting skills, with experience in automating tasks and building AI-driven processes

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.