Derivatives Quant Data Engineer – Investment Management

Quant Capital
London
1 year ago
Applications closed

Derivatives Quant Data Engineer – Investment Management

£200k Total Comp

Hybrid


Quant Capital is urgently looking for a Python Data Developer to join our high profile client.


Our client is a well known Systematic Trading Hedge Fund. They like technology especially the opensource variety as well as scalability and robust performance (much like their track record). They currently run around £2 billion in liquid capital.


This is an environment of google or a startup where tech is number 1 the firm is known globally for its attitudes and rigour more importantly, you will be surrounded by smart people deeply interested in teaching what they know, and in learning from you.


The environment is that of Facebook or Google, relaxed open with time to think and make the right decisions. The atmosphere is calm and relaxed with an open dress code. This is a role for techies, those who are motivated by the sharp end of technology and the possibility of making serious money doing something you are passionate about.


Day to Day the Derivatives Quant Data Engineer will:

  • Work closely with Data engineering and Quant Research acting as a go between
  • Calculation of asset returns through modelling and extraction of pricing from market data sources
  • Support and monitor the end-to-end lifecycle, including fixing errors and building out further functionality.
  • Assist ingestion of external data that will result in seamless integration of internal and external data sources.


The Derivatives Quant Data Engineer Must have:

  • MSc or PhD Computer Science, Maths, Physics or Chemistry degree from a Red Brick UK or EU University
  • Must have experience in Trading or Investment management
  • Recent experience on the buy side
  • Strong market data source knowledge
  • Python
  • Strong Derivatives experience to include modelling
  • Strong financial products knowledge
  • Bloomberg
  • An Understanding of computing fundamentals, object orientated programming, threading, concurrency and distributed systems


My client is based in Central London Hybrid.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.