Deep Learning Architect, AWS, Industries

Amazon
London
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Manager

Machine Learning Engineer

Machine Learning Engineer (Manager)

Job ID: 2874530 | AWS EMEA SARL (UK Branch)

Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting-edge Generative AI algorithms to solve real-world problems with significant impact? Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of architects, data scientists, and engineers working step-by-step with customers to build bespoke solutions that harness the power of generative AI.

The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select, train, and fine-tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost-efficiently.

You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience.

Key job responsibilities

The primary responsibilities of this role are to:

  1. Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries.
  2. Interact with customers directly to understand their business problems and lead them by prescriptively defining and implementing scalable Generative AI solutions to solve them.
  3. Work closely with account teams, research scientist teams, and product engineering teams to design architectures and applications, drive model implementations, and guide new solution deployment.

BASIC QUALIFICATIONS

  • Bachelor's degree in computer science, engineering, mathematics or equivalent.
  • Experience in software development with an object-oriented language.
  • Experience in cloud-based solutions (AWS or equivalent), system, network, and operating systems.
  • Experience in databases (e.g., SQL, NoSQL, Hadoop, Spark, Kafka, Kinesis) and experience hosting and deploying ML solutions (e.g., for training, fine-tuning, and inferences).

PREFERRED QUALIFICATIONS

  • Masters or PhD degree in computer science, or related technical, math, or scientific field.
  • Strong working knowledge of deep learning, machine learning, and statistics.
  • Experiences related to AWS services such as SageMaker, Bedrock, EMR, S3, OpenSearch Service, Step Functions, Lambda, and EC2.
  • Hands-on experience with deep learning (e.g., CNN, RNN, LSTM, Transformer), machine learning, CV, GNN, or distributed training and strong communication skills, with attention to detail and ability to convey rigorous mathematical concepts and considerations to non-experts.

Amazon is an equal opportunities employer. We believe passionately that employing a diverse workforce is central to our success. We make recruiting decisions based on your experience and skills. We value your passion to discover, invent, simplify, and build.

Protecting your privacy and the security of your data is a longstanding top priority for Amazon. Please consult ourPrivacy Noticeto know more about how we collect, use and transfer the personal data of our candidates.

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.