Datawarehouse Lead (ERP, Informatica, Azure, ETL, SQL, BI)

Dudley
3 weeks ago
Create job alert

Job Title: Data Warehouse Manager
Location: Dudley, West Midlands - Hybrid Working (ideally 2 days a week onsite, rest remote)
Job Type: Full time, Permanent
Salary: £70k - £90K Base Per Annum DOE, Plus Standard Company Benefits (Pension etc)

Our leading, Midlands based manufacturing client is seeking a hands on, technical Data Warehouse Lead/Manager with ERP and Azure Cloud experience, to oversee the design, development and maintenance of their data hub, as part of their corporate data warehouse solutions.

As well as being responsible for the design and development of the data platform, this is also a hands on role - 60% hands on development with 40% Team Leading including work allocation, pastoral care. The Datawarehouse Manager will have 2 people in the US to lead, along with a BI Analyst.

Responsibilities:

Designing, building, testing, and documenting ETL/ELT solutions.
Ensuring up-to-date and accurate documentation, including lineage, for all production solutions.
Monitoring and optimising the performance of data warehouse systems.
Managing data models, schemas, and metadata repositories.
Maintaining operational data warehouse builds and resolving issues promptly.
Ensuring adherence to agreed standards and controls for data marts and operational data stores.
Leading the release and promotion of new solutions to enhance functionality and productivity.Requirements:

Experience designing, writing, editing, debugging and testing advanced SQL code, stored procedures and database schemas for Microsoft SQL Server and ideally Oracle as well.
Data warehousing, data modelling, insights creation, data science, cloud solutions and data management.
ETL development and orchestration experience using Azure Data Factory and Informatica.
Experience using both Cloud (Azure) and On-prem data platform configurations.
Working within an end-to-end BI lifecycle.
Experience with development using the Microsoft Fabric suite of tools is preferred.
Knowledge and experience of working with ERP systems - essential.
Experience of working with ERP systems within the manufacturing industry a big plus.
Team Leading/Management experience.If this opportunity appeals to you and aligns closely to your background - please submit your application to Jackie Dean at Jumar for consideration.

Jumar takes great pride in representing socially responsible clients who not only prioritise diversity and inclusion but also actively combat social inequality. Together, we have the power to make a profound impact on fostering a more equitable and inclusive society. By working with us, you become part of a movement dedicated to promoting a diverse and inclusive workforce

Related Jobs

View all jobs

Data Engineering Lead / Data Architect

Lead Data Engineer - Snowflake, DBT, Airflow - London - £100k

Lead Data Engineer (AD -Consulting) - Exclusive

Lead Reporting and Data Analyst

Data Engineering Specialist

Data Governance Manager

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.