Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist with Python

Luxoft
City of London
1 week ago
Create job alert
Overview

We are seeking a highly experienced Data Scientist with deep expertise in Python and advanced machine learning techniques. You need to have a strong background in statistical analysis, big data platforms, and cloud integration, and you will be responsible for designing and deploying scalable data science solutions.

Responsibilities

  • Develop and deploy machine learning, deep learning, and predictive models.
  • Perform statistical analysis, data mining, and feature engineering on large datasets.
  • Build and optimize data pipelines and ETL workflows.
  • Collaborate with data engineers and business stakeholders to deliver actionable insights.
  • Create compelling data visualizations using tools like Tableau, Power BI, Matplotlib, or Plotly.
  • Implement MLOps practices, including CI/CD, model monitoring, and lifecycle management.
  • Mentor junior data scientists and contribute to team knowledge-sharing.
  • Stay current with trends in AI/ML and data science.
Skills

  • Must have
  • Minimum 8+ years of hands-on experience in Data Science with strong expertise in Python and libraries such as Pandas, NumPy, SciPy, Scikit-learn, TensorFlow, or PyTorch.
  • Proven ability to design, develop, and deploy machine learning, deep learning, and predictive models to solve complex business problems.
  • Strong background in statistical analysis, data mining, and feature engineering for large-scale structured and unstructured datasets.
  • Experience working with big data platforms (Spark, Hadoop) and integrating with cloud environments (AWS, Azure, GCP).
  • Proficiency in building data pipelines, ETL workflows, and collaborating with data engineers for scalable data solutions.
  • Expertise in data visualization and storytelling using Tableau, Power BI, Matplotlib, Seaborn, or Plotly to present insights effectively.
  • Strong knowledge of MLOps practices, including CI/CD pipelines, model deployment, monitoring, and lifecycle management.
  • Ability to engage with business stakeholders, gather requirements, and deliver actionable insights aligned with business goals.
  • Experience in mentoring junior data scientists/analysts, leading projects, and contributing to knowledge-sharing across teams.
  • Continuous learner with strong problem-solving, communication, and leadership skills, staying updated with the latest trends in AI/ML and data science.
Nice to have

N/A


#J-18808-Ljbffr

Related Jobs

View all jobs

NLP Data Scientist with Python and SQL

Data Scientist - Growth

Data Scientist

Data Scientist - Growth

Data Scientist - Growth London

Data Scientist - Economics

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.