National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist (The Insight Alchemist)

Unreal Gigs
London
6 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist - AI / ML, Python, Scripting, Cyber Security

Data Scientist - Inside IR35 contract

Data Science Placement Programme

Data Science Placement Programme

Are you driven by the desire to uncover insights from massive amounts of data and turn them into impactful business strategies? Do you excel at using advanced analytics, machine learning, and data science techniques to solve complex problems and make data-driven decisions? If you're passionate about applying your analytical skills to transform raw data into actionable insights, thenour clienthas the perfect opportunity for you. We’re looking for aData Scientist(aka The Insight Alchemist) to leverage data science techniques to drive innovation and influence business strategies.

As a Data Scientist atour client, you’ll collaborate with cross-functional teams, including product managers, engineers, and business stakeholders, to turn data into valuable insights. You’ll develop machine learning models, create data-driven recommendations, and deliver powerful insights that drive product development, improve customer experience, and optimize business processes.

Key Responsibilities:

  1. Data Analysis and Modeling:
  • Analyze large, complex datasets to uncover hidden patterns, correlations, and trends. You’ll apply machine learning algorithms, statistical models, and advanced data analysis techniques to drive decision-making and optimize business outcomes.
Develop Predictive Models:
  • Build and deploy predictive models using techniques like regression, classification, clustering, and time series analysis. You’ll use tools like TensorFlow, PyTorch, Scikit-learn, or similar frameworks to build models that forecast trends and automate decision-making processes.
Data Exploration and Feature Engineering:
  • Perform data wrangling, exploration, and feature engineering to prepare data for analysis. You’ll clean, transform, and extract meaningful features from raw data to improve the accuracy and performance of machine learning models.
Collaborate with Cross-Functional Teams:
  • Work closely with engineers, product managers, and business stakeholders to understand their needs and translate them into data science solutions. You’ll present your findings in a clear, actionable way to influence business strategies.
Experimentation and A/B Testing:
  • Design and conduct A/B tests and experiments to measure the impact of new features, marketing campaigns, or product improvements. You’ll analyze results, provide recommendations, and help teams optimize their decisions using statistical testing methods.
Data Visualization and Reporting:
  • Create data visualizations, dashboards, and reports to communicate your findings to technical and non-technical stakeholders. You’ll use tools like Tableau, Power BI, or Matplotlib to deliver compelling, easy-to-understand insights.
Continuous Learning and Innovation:
  • Stay current with the latest advancements in data science, machine learning, and AI. You’ll experiment with new algorithms, tools, and techniques to continuously improve your models and drive innovation within the organization.

Requirements

Required Skills:

  • Data Science Expertise:Strong knowledge of data science techniques, including machine learning, statistical analysis, and predictive modeling. You’re experienced with tools like Python, R, TensorFlow, PyTorch, or Scikit-learn.
  • Data Wrangling and Feature Engineering:Proficiency in data manipulation and feature engineering. You have experience working with large datasets and preparing them for machine learning models, using SQL, Pandas, or similar tools.
  • Machine Learning and AI Knowledge:Hands-on experience developing and deploying machine learning models, including regression, classification, clustering, and time series analysis. You’re familiar with cloud-based platforms like AWS, GCP, or Azure for model deployment.
  • Data Visualization and Communication:Expertise in creating data visualizations and reports to communicate insights. You can present complex findings in an easy-to-understand format using tools like Tableau, Power BI, or Matplotlib.
  • Collaboration and Communication:Strong collaboration skills, with the ability to work with cross-functional teams and communicate complex data insights to non-technical stakeholders.

Educational Requirements:

  • Bachelor’s or Master’s degree in Data Science, Statistics, Mathematics, Computer Science, or a related field.Equivalent experience in data science is also highly valued.
  • Certifications or additional coursework in machine learning, AI, or data science are a plus.

Experience Requirements:

  • 3+ years of experience in data science or analytics,with hands-on experience developing models and generating insights from large datasets.
  • Proven track record of working with complex data to drive business decisions, optimize processes, and deliver measurable results.
  • Experience working with cloud-based data services (AWS, Google Cloud, Azure) for model training and deployment is highly desirable.

Benefits

  • Health and Wellness: Comprehensive medical, dental, and vision insurance plans with low co-pays and premiums.
  • Paid Time Off: Competitive vacation, sick leave, and 20 paid holidays per year.
  • Work-Life Balance: Flexible work schedules and telecommuting options.
  • Professional Development: Opportunities for training, certification reimbursement, and career advancement programs.
  • Wellness Programs: Access to wellness programs, including gym memberships, health screenings, and mental health resources.
  • Life and Disability Insurance: Life insurance and short-term/long-term disability coverage.
  • Employee Assistance Program (EAP): Confidential counseling and support services for personal and professional challenges.
  • Tuition Reimbursement: Financial assistance for continuing education and professional development.
  • Community Engagement: Opportunities to participate in community service and volunteer activities.
  • Recognition Programs: Employee recognition programs to celebrate achievements and milestones.
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.