Data Scientist (Marketing)

Starling Bank
Southampton
7 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist/Machine Learning Engineer - RNA Design

Starling is the UK’s first and leading digital bank on a mission to fix banking! Our vision is fast technology, fair service, and honest values. All at the tap of a phone, all the time.

We are about giving customers a new way to spend, save and manage their money while taking better care of the planet which has seen us become a multi-award winning bank that now employs over 2800 across five offices in London, Cardiff, Dublin, Southampton, and Manchester. Our journey started in 2014, and since then we have surpassed million accounts (and four account types!) with 350,000 business customers. We are a fully licensed UK bank but at the heart, we are a tech first company, enabling our platform to deliver brilliant products.

Our technologists are at the very heart of Starling and enjoy working in a fast-paced environment that is all about building things, creating new stuff, and disruptive technology that keeps us on the cutting edge of fintech. We operate a flat structure to empower you to make decisions regardless of what your primary responsibilities may be, innovation and collaboration will be at the core of everything you do. Help is never far away in our open culture, you will find support in your team and from across the business, we are in this together!

The way to thrive and shine within Starling is to be a self-driven individual and be able to take full ownership of everything around you: From building things, designing, discovering, to sharing knowledge with your colleagues and making sure all processes are efficient and productive to deliver the best possible results for our customers. Our purpose is underpinned by five Starling values: Listen, Keep It Simple, Do The Right Thing, Own It, and Aim For Greatness.

Hybrid Working

We have a Hybrid approach to working here at Starling - our preference is that you're located within a commutable distance of one of our offices so that we're able to interact and collaborate in person. We don't like to mandate how much you visit the office and work from home, that's to be agreed upon between you and your manager.

We are looking for Data Scientists with experience working in Marketing to help the bank solve complex problems using Machine Learning. In this role, you'll use your skills and passion for data to understand our customers and drive growth through effective marketing strategies.

Responsibilites:

Develop and refine models to predict customer lifetime value (LTV) to optimise marketing investments and resource allocation. Analyse customer behaviour and product usage data to identify target audiences and tailor marketing efforts for maximum impact. Employ causal models to evaluate the effectiveness of CRM and invite campaigns and use causal inference to personalise campaigns for individual users. Contribute to building and interpreting Marketing Mix Models (MMM) to understand the best growth activities. Collaborate with Data Analysts to ensure they effectively utilise the models you build.

Requirements

We’re open-minded when it comes to hiring and we care more about aptitude and attitude than specific experience or qualifications. We think the ideal candidate will encompass most of the following:

Solid understanding of customer lifetime value (LTV) modelling and marketing mix modelling. Deep understanding of statistics, especially Bayesian reasoning, and the ability to assess the accuracy of your results. Experience with causal inference concepts and machine learning models for causal inference. Comfortable with a variety of modelling techniques, including gradient boosting, neural networks, linear regression, and blending these approaches. Expert in Python with the ability to make well-reasoned design decisions in your code. Comfortable working with external data sources through APIs. Ability to see the bigger picture of business processes and clearly define how models can be integrated and add value. Excellent communication and visualisation skills to effectively present your findings to different audiences.

Interview Process

Interviewing is a two way process and we want you to have the time and opportunity to get to know us, as much as we are getting to know you! Our interviews are conversational and we want to get the best from you, so come with questions and be curious. In general you can expect the below, following a chat with one of our Talent Team:

Stage 1 - 45 mins with one of the team Stage 2 - Take home test Stage 3 - 60 mins technical interview with two team members Stage 4 - 45 min final with an executive and a member of the people team

Benefits

• 33 days holiday (including flexible bank holidays)

• An extra day’s holiday for your birthday

• 16 hours paid volunteering time a year

• Part-time and/or flexible hours available for most roles

• Salary sacrifice, company enhanced pension scheme

• Life insurance at 4x your salary

• Hybrid/remote working

• Private Medical Insurance with VitalityHealth including mental health support and cancer care. Partner benefits include discounts with Waitrose, Mr&Mrs Smith and Peloton

• Generous family-friendly policies

• Varied social groups set up and run by our employees

• Perkbox membership giving access to retail discounts, a wellness platform for physical and mental health, and weekly free and boosted perks

• Access to initiatives like Cycle to Work, Salary Sacrificed Gym partnerships and Electric Vehicle (EV) leasing

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Winning Cover Letter for Machine Learning Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for machine learning jobs with this proven 4-paragraph structure. Ideal for entry-level candidates, career switchers, and professionals looking to advance in the machine learning sector. When applying for a machine learning job, your cover letter is a vital part of your application. Machine learning is an exciting and rapidly evolving field, and your cover letter offers the chance to demonstrate your technical expertise, passion for AI, and your ability to apply machine learning techniques to solve real-world problems. Writing a cover letter for machine learning roles may feel intimidating, but by following a clear structure, you can showcase your strengths effectively. Whether you're just entering the field, transitioning from another role, or looking to advance your career in machine learning, this article will guide you through a proven four-paragraph structure. We’ll provide practical tips and sample lines to help you create a compelling cover letter that catches the attention of hiring managers in the machine learning job market.

Veterans in Machine Learning: A Military‑to‑Civilian Pathway into AI Careers

Introduction Artificial intelligence is no longer relegated to sci‑fi films—it underpins battlefield decision‑support, fraud detection, and even supermarket logistics. The UK Government’s 2025 AI Sector Deal forecasts an additional £200 billion in GDP by 2030, with machine‑learning (ML) engineers cited as the nation’s second most in‑demand tech role (Tech Nation 2024). The Ministry of Defence’s Defence AI Strategy echoes that urgency, earmarking £1.6 billion for FY 2025–28 to embed ML into planning, logistics, and autonomous systems. If you have ever tuned a radar filter, plotted artillery trajectories, or sifted sensor data for actionable intel, you have already worked with statistical modelling—the backbone of machine learning. This guide shows UK veterans how to reframe military experience for ML roles, leverage MoD transition funding, and land high‑impact positions building the models shaping tomorrow’s defence and commercial landscapes. Quick Win: Bookmark our live board for Machine‑Learning Engineer roles to see who’s hiring today.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.