Data Scientist in Power Electrical Systems

Kraken
Manchester
3 weeks ago
Create job alert

Data Scientist in Power Electrical Systems

3 days ago Be among the first 25 applicants


Help us use technology to make a big green dent in the universe!


Kraken powers some of the most innovative global developments in energy.


We’re a technology company focused on creating a smart, sustainable energy system. From optimising renewable generation, creating a more intelligent grid and enabling utilities to provide excellent customer experiences, our operating system for energy is transforming the industry around the world in a way that benefits everyone.


It’s a really exciting time in energy. Help us make a real impact on shaping a better, more sustainable future.


At Kraken Grid, we’re passionate about building products that solve problems. Our grid monitoring and analytics platform supports grid operators and utilities.


Our technology platform offers data collection, analytics, and real-time monitoring services, including fault management, power quality, and power flow modelling, to Distribution System Operators (DSOs or DNOs) looking to digitally transform their operations. Our services enable full grid visibility, allowing operators to better and more efficiently predict, manage, and operate their infrastructure amidst the rapid integration of Decentralised Energy Resources.


The energy industry is undergoing the largest transformation since industrialization at an unprecedented rate of change, and we are positioning ourselves to be at the heart of that change.


As part of Kraken Grid, your main mission will be to help define new and improve our existing grid analytics solutions. We are looking for individuals who love to engage with interesting client’s problems and the passion to build and shape the future within a collaborative, highly agile development, and community-based environment.


What you'll do

  • Design, implement, and test innovative computer science solutions applicable to power systems from the transmission network to electrical distribution grids
  • Develop and test power system algorithms for custom projects
  • Write technical requirements and specification documents for product development
  • Implementation of the core algorithm in Kraken Grid solutions

What you'll need

  • PhD or master's in electrical power systems engineering, with at least 3-5 years of work experience
  • Hands‑on and analytical approach to work
  • Curious, eager to learn. Initiative spirit, self‑organised and attentive to detail
  • High analytical mind to solve complex issues. Synthetic thinking to design clean solutions
  • Hands‑on and demonstrated ability to work as part of a team
  • Excellent written and oral communication skills in English (French is a plus)
  • Excellent knowledge and analytical analysis of electrical power distribution grids
  • Experience in performance evaluation of algorithms applied to power systems
  • Expert in programming in Python – other languages can be a plus
  • Experience in FastAPI micro‑services development is a plus
  • Knowledge using Git and Linux are desirable

If this sounds like you then we'd love to hear from you.


Are you ready for a career with us? We want to ensure you have all the tools and environment you need to unleash your potential. Need any specific accommodations? Whether you require specific accommodations or have a unique preference, let us know, and we'll do what we can to customise your interview process for comfort and maximum magic!


Studies have shown that some groups of people, like women, are less likely to apply to a role unless they meet 100% of the job requirements. Whoever you are, if you like one of our jobs, we encourage you to apply as you might just be the candidate we hire. Across Kraken, we're looking for genuinely decent people who are honest and empathetic. Our people are our strongest asset and the unique skills and perspectives people bring to the team are the driving force of our success. As an equal opportunity employer, we do not discriminate on the basis of any protected attribute. Our commitment is to provide equal opportunities, an inclusive work environment, and fairness for everyone.


We may use artificial intelligence (AI) tools to support parts of the hiring process, such as reviewing applications, analyzing resumes, or assessing responses. These tools assist our recruitment team but do not replace human judgment. Final hiring decisions are ultimately made by humans. If you would like more information about how your data is processed, please contact us.


Seniority level

Not Applicable


Employment type

Full-time


Job function

Engineering and Information Technology


Industries

Utilities and Environmental Services


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist – Power Grids & Energy Analytics

Manufacturing Data Scientist

Data Scientist

Data Scientist

Fraud & AML Monitoring Data Scientist

Fraud & AML Monitoring Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.