Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist

Aristocrat Leisure
City of London
1 week ago
Create job alert

As one of our Games Data Scientists you will be the business facing masterminds who help turn business questions into actionable insights. You research and analyze player behaviour, and come up with recommendations. Data Scientists do this by listening to team members, understanding context and challenging business ideas. Data Scientists use diverse techniques - frequentist and Bayesian statistics, machine learning, exploratory and explanatory data analysis, causal inference, data visualization, monte carlo modelling, econometric analysis, etc. Such broad requirements call for the ability to learn quickly, work efficiently with peers and communicate data clearly and effectively. Games Data Scientists are true visionaries who support business decisions with data and in-depth analytics.You will have the opportunity to work with large and complex data sets, with the autonomy to make a huge impact on the success of our games. You will also be working as part of an experienced and highly skilled team of 20 with opportunities to learn and develop.* Discuss with stakeholders requirements for analysis* Run exploratory data analysis and turn it into questions which can be answered with analytical techniques* Use simple analytics, statistical or causal inference, machine learning or any other techniques to answer questions and address problems* Communicate results clearly and effectively* Take care of unclear and ambiguous requirements* Communicate complex ideas and analyses in a simple way* Work independently on complex projects* Be willing to acquire new skills and learn new methodologies, whether related to stakeholder management, communication or data science* Be able to use diverse data science tools and approaches* A degree or equivalent work experience in data driven field* Ability to use visualization techniques for communicating data and analysis* Experience of using any of the following to answer business or scientific questions -statistics, mathematics, machine learning, econometrics, causal techniques, monte carlo modelling, etc.* R/Python experience* Knowledge and experience of SQL* Ability to work a minimum of 3 days a week in our central london office.
#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.