Data Scientist

bet365
Stoke-on-Trent
3 weeks ago
Create job alert
Data Scientist

bet365, Stoke-On-Trent, England, United Kingdom


5 days ago Be among the first 25 applicants


At bet365, we're one of the world's leading online gambling companies, revolutionising the industry since 2000. Founded by Denise Coates CBE, we now employ over 9,000 people and serve over 100 million customers in 27 languages. Our focus on In-Play betting has solidified our market-leading position, offering an unmatched experience across 96 sports and 700,000 streaming events. With over 750 concurrent sporting fixtures at peak and more live sports streamed than anyone else in Europe, we handle over 6 billion HTTP requests daily and process more than 2 million bets per hour at peak.


We empower our employees to push boundaries and explore new ideas, cultivating a culture that celebrates and rewards creativity. This offers employees a wealth of opportunities for growth, giving them the opportunity to make a real impact in the world of online gambling. As a forward-thinking company, we’re breaking new ground in software innovation too, redefining what’s possible for our customers worldwide.


Job Description

As a Data Scientist, you will be responsible for developing machine learning solutions and performing statistical analysis to inform strategic, data-driven business decisions and initiatives. We are seeking a talented and motivated Data Scientist to join our Data Analytics team. The department is responsible for monitoring, analysing, and optimising key performance indicators across our range of Sports and Gaming products. In this role, you will be instrumental in extracting valuable insights from vast datasets, developing predictive models, and contributing to data-driven decision-making across various business functions. You will work collaboratively with stakeholders from areas such as Fraud, Responsible Gambling, Trading and Branding to identify opportunities, solve complex problems, and build robust data solutions. This is an exciting opportunity to apply cutting‑edge data science techniques in a fast‑paced, high‑volume, and globally recognised industry, utilising a modern and powerful tech stack. This role is eligible for inclusion in the Company’s hybrid working from home policy.


Qualifications

  • Excellent analytical, problem‑solving, and critical thinking skills.
  • PhD degree in Computer Science, Statistics, Mathematics, or a related quantitative field.
  • Experience using core machine learning techniques, such as regressions, classification, clustering and deep learning.
  • Strong programming skills in languages such as Python, R, SQL.
  • Familiar with data science libraries and frameworks.
  • Detailed understanding of data mining, data warehousing, and data visualisation techniques.
  • Knowledge of Artificial Intelligence and its use within data science.
  • Strong communication skills with both technical and non-technical audiences.
  • Knowledge of cloud computing, distributed systems, and big data technologies would be advantageous.

Additional Information

  • Sourcing, cleaning, and validating diverse datasets from various internal and external sources.
  • Conducting in-depth exploratory data analysis to uncover hidden patterns, identify trends, and generate actionable insights that inform strategic business decisions.
  • Developing and deploying robust statistical and machine learning models to address complex business challenges and drive innovative solutions.
  • Designing, implementing, and analysing A/B tests and other controlled experiments to measure the impact of new features, strategies, or models.
  • Contributing to the development and maintenance of scalable data science infrastructure.
  • Partnering closely with stakeholders to understand key business goals, and translate them into effective, data‑driven solutions.
  • Communicating complex findings and insights to technical and non‑technical audiences through visualisations, reports, and presentations.
  • Researching and championing innovative data science techniques, tools, and methodologies.
  • Fostering a culture of continuous learning and innovation within the wider Data Analytics team.

By applying to us you are agreeing to share your Personal Data in accordance with our Recruitment Privacy Notice - https://www.bet365careers.com/privacy-policy


At bet365, we're committed to creating an environment where everyone feels welcome, respected and valued. Where all individuals can grow and develop, regardless of their background. We're Never Ordinary, and we're always striving to be better. If you need any adjustments or accommodations to the recruitment process, at either application or interview, please don’t hesitate to reach out.


Seniority level

Mid-Senior level


Employment type

Full-time


Job function

Information Technology


Industries

Gambling Facilities and Casinos


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist - New

Data Scientist/AI Engineer

Data Scientist (Globally Renowned Retail Group)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.