Data Scientist & Engineer

Gail's Limited
London
4 days ago
Create job alert
Responsibilities
  • Develop advanced analytics / data science solutions to solve problems focused on forecasting, new site selection, ordering, production, rota scheduling, logistics and online services optimisation.
  • Extend functionality of our Bread GPT service (Large Language Model insight synthesis engine).
  • Data engineering: build and develop ETL processes in Microsoft Fabric to support reporting, insight and applied AI models.
  • A hands-on role working with other staff and partners.
  • Utilize data science and analytics to enhance application functionality and performance. Work with the data team to create and deploy machine learning models and AI-driven solutions for real-world applications.
  • Ensure the continuous development and delivery of solutions.
  • Monitor and evolve solutions.
  • Mentor and guide junior team members, fostering a culture of continuous learning and improvement.
  • Develop effective working relationships with colleagues within and beyond the Technology team to ensure that a consistent, high-quality service is delivered.
Required Qualifications
  • Ideally a bachelor’s degree in Computer Science, Analytics, Engineering, or a related field.
  • Minimum of 3+ years of experience with excellent knowledge of Python and preferably R.
  • Knowledge of ETL processes - ideally basic understanding of Microsoft ETL (Data Factory / Synapse / Fabric).
  • Knowledge of databases (SQL & NoSQL) and API development/integration.
  • Understanding of software development and application design.
  • Proven experience in building data science solutions and developing customised LLM applications.
  • Strong interest in technology.
  • Excellent problem-solving skills and attention to detail.
  • Knowledge of effective business analysis - ability to gather, document, and analyze business requirements effectively and the experience creating user stories, process flows, and wireframes.
  • Ability to work effectively in a fast-paced, dynamic environment.
  • Strong communication and collaboration skills.
  • "Can do" outlook and approach to work.
  • Demonstrate the ability to think around issues and look at the bigger picture to provide solutions through a variety of problem-solving techniques.
  • Ability to prioritise issues according to business needs, and to escalate when necessary/appropriate, and problem solve.
Preferred Qualifications
  • Experience in manufacturing, retail or hospitality industries.
  • Knowledge of programming languages and frameworks.
  • Free food and drink when working
  • 50% off food and drink when not working
  • 33 days holiday
  • Pension Scheme
  • Discounts and Savings from high-street retailers and restaurants
  • 24 hour GP service
  • Cycle to work scheme
  • Twice yearly pay review
  • Development programmes for you to RISE with GAIL's


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist & Engineer: Forecasting & LLM Apps

ML-Driven Data Scientist & Engineer (Azure)

Data Scientist/AI Engineer

Data Scientist/AI Engineer

Data Scientist & Software Engineer (ML/Ops)

Data Scientist/ Software Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.