Data Scientist (eDV clearance required)

London
9 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist - New

Data Scientist / Software Engineer

Data Scientist - Contract - 12 months

Data Scientist (Globally Renowned Retail Group)

Our client, a leading company in the Defence & Security sector, is currently seeking a data-driven and passionate Data Scientist with eDV clearance to join their team. This permanent position offers the opportunity to work on complex data problems and deliver innovative solutions that drive real impact.

Key Responsibilities:

Leading client projects and providing subject matter expertise.
Working in scrum-like environments for iterative and 'fail-fast' work and innovation.
Assessing clients' business and technical needs to identify opportunities for data science usage.
Solving problems using data science techniques and in a scientifically robust fashion.
Identifying relevant data sources and leveraging them to meet client needs.
Modelling various forms of data for efficient data science use.
Investigating and analysing data to uncover meaningful insights.
Applying statistical and evidence-based techniques to inform insights and actions.
Communicating technical content appropriately both internally and to customers.
Building maintainable code using existing or novel data science techniques.
Designing, evaluating, and implementing data science and machine learning techniques.
Developing scalable models and algorithms for deployment in production environments.
Applying ethical principles in handling data.
Delivering high-quality work to agreed timelines and taking the initiative.
Supporting client engagements, including pitches and presentations.
Contributing to the company strategy and helping to shape the future.

Job Requirements:

DV Cleared (2023, 2024, 2025) or holding DV Clearance.
Experience in data science, machine learning algorithms, and data engineering.
Industry experience in consultancy, engineering, or data science.
Significant experience with cloud-based infrastructure (e.g., AWS, Azure, GCP).
Proficiency in Python and relevant data science libraries.
Experience in using CI/CD tooling for code deployment and testing.
Knowledge of database technologies (e.g., SQL, NoSQL such as Elasticsearch and Graph databases).
Understanding of coding best practices, design patterns, and versioning.
Strong interpersonal skills and the ability to communicate effectively with clients and colleagues.

Benefits:

Joining a dynamic and agile organisation.
Opportunities for professional growth and development.
Working in an environment that values transparency, fairness, and daring.
Collaborative and respectful work environment.
Hybrid working model with 2-3 days in the office or on a client site.
If you are a skilled Data Scientist with the necessary clearance and a passion for technology and problem-solving, we would love to hear from you. Apply now to join our client's innovative and forward-thinking team

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.