Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist

Mercor
City of London
2 weeks ago
Create job alert

Get AI-powered advice on this job and more exclusive features.


Job Description: AI Task Evaluation & Statistical Analysis Specialist
Role Overview

We're seeking a data-driven analyst to conduct comprehensive failure analysis on AI agent performance across finance-sector tasks. You'll identify patterns, root causes, and systemic issues in our evaluation framework by analyzing task performance across multiple dimensions (task types, file types, criteria, etc.).


Key Responsibilities

  • Statistical Failure Analysis: Identify patterns in AI agent failures across task components (prompts, rubrics, templates, file types, tags)
  • Root Cause Analysis: Determine whether failures stem from task design, rubric clarity, file complexity, or agent limitations
  • Dimension Analysis: Analyze performance variations across finance sub-domains, file types, and task categories
  • Reporting & Visualization: Create dashboards and reports highlighting failure clusters, edge cases, and improvement opportunities
  • Quality Framework: Recommend improvements to task design, rubric structure, and evaluation criteria based on statistical findings
  • Stakeholder Communication: Present insights to data labeling experts and technical teams

Required Qualifications

  • Statistical Expertise: Strong foundation in statistical analysis, hypothesis testing, and pattern recognition
  • Programming: Proficiency in Python (pandas, scipy, matplotlib/seaborn) or R for data analysis
  • Data Analysis: Experience with exploratory data analysis and creating actionable insights from complex datasets
  • AI/ML Familiarity: Understanding of LLM evaluation methods and quality metrics
  • Tools: Comfortable working with Excel, data visualization tools (Tableau/Looker), and SQL

Preferred Qualifications

  • Experience with AI/ML model evaluation or quality assurance
  • Background in finance or willingness to learn finance domain concepts
  • Experience with multi-dimensional failure analysis
  • Familiarity with benchmark datasets and evaluation frameworks
  • 2-4 years of relevant experience

Seniority level

Not Applicable


Employment type

Full-time


Job function

Engineering and Information Technology


Industries

Software Development


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.