National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist (Customer Identity)

Starling Bank
Manchester
7 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist - £80,000 - Hybrid - London

Data Scientist - Biomarkers - Remote - Outside IR35

Data Science Placement Programme

Data Science Placement Programme

Starling is the UK’s first and leading digital bank on a mission to fix banking! Our vision is fast technology, fair service, and honest values. All at the tap of a phone, all the time.

Starling is the UK’s first and leading digital bank on a mission to fix banking! We built a new kind of bank because we knew technology had the power to help people save, spend and manage their money in a new and transformative way.

We’re a fully licensed UK bank with the culture and spirit of a fast-moving, disruptive tech company. We’re a bank, but better: fairer, easier to use and designed to demystify money for everyone. We employ more than 3,000 people across our London, Southampton, Cardiff and Manchester offices.

Our technologists are at the very heart of Starling and enjoy working in a fast-paced environment that is all about building things, creating new stuff, and disruptive technology that keeps us on the cutting edge of fintech. We operate a flat structure to empower you to make decisions regardless of what your primary responsibilities may be, innovation and collaboration will be at the core of everything you do. Help is never far away in our open culture, you will find support in your team and from across the business, we are in this together!

The way to thrive and shine within Starling is to be a self-driven individual and be able to take full ownership of everything around you: From building things, designing, discovering, to sharing knowledge with your colleagues and making sure all processes are efficient and productive to deliver the best possible results for our customers. Our purpose is underpinned by five Starling values: Listen, Keep It Simple, Do The Right Thing, Own It, and Aim For Greatness.

Hybrid Working

We have a Hybrid approach to working here at Starling - our preference is that you're located within a commutable distance of one of our offices so that we're able to interact and collaborate in person.

Our Data Environment

Our Data teams are aligned to divisions covering the following Banking Services & Products, Customer Identity & Financial Crime and Data & ML Engineering. Our Data teams are excited about delivering meaningful and impactful insights to both the business and more importantly our customers. Hear from the team in our latestblogsor our case studies withWomen in Tech.

We are looking for talented data professionals at all levels to join the team. We value people being engaged and caring about customers, caring about the code they write and the contribution they make to Starling. People with a broad ability to apply themselves to a multitude of problems and challenges, who can work across teams do great things here at Starling, to continue changing banking for good.

This role sits within the Customer Identity & Financial Crime data division. This team is responsible for the deployment of analytical solutions and machine learning models to prevent and detect financial crime and better understand our customers. This role specifically will focus on the customer identity domain, with a focus on identity verification, KYC and OCR technologies.

Responsibilities:

  • Build, test and deploy machine learning models which will improve and/or automate decision making
  • Collaborate with engineering, cyber, risk and operational teams teams to identify appropriate data points that are relevant for modelling, using this insight to inform the creation of predictive models
  • Conduct exploratory data analysis to identify trends, patterns and anomalies in customer identity data
  • Continuously monitor the performance of identity models in production and refine them to improve accuracy, scalability and efficiency

Requirements

We’re open-minded when it comes to hiring and we care more about aptitude and attitude than specific experience or qualifications. We think the ideal candidate will encompass most of the following:

  • Demonstrable industry experience Data Science/Machine Learning in customer identity-related projects:
    • Identity verification / KYC
    • Computer vision
    • OCR
    • Anomaly detection
  • Excellent skills in Python and SQL
  • Experience with libraries such as Scikit-learn, Tensorflow, Pytorch
  • Strong data wrangling skills for merging, cleaning and sampling data
  • Strong data visualisation and communication skills are essential
  • Understanding of the software development life cycle and experience using version control tools such as git
  • Demonstrable experience deploying machine learning solutions in a production environment

Desirables:

  • Experience with AWS/GCP
  • Desire to build explainable ML models (using techniques such as SHAP)
  • Familiarity with data privacy regulations and experience in applying these to model development

Interview process

Interviewing is a two way process and we want you to have the time and opportunity to get to know us, as much as we are getting to know you! Our interviews are conversational and we want to get the best from you, so come with questions and be curious. In general you can expect the below, following a chat with one of our Talent Team:

  • Stage 1 - 45 mins with one of the team
  • Stage 2 - Take-home challenge
  • Stage 3 - 60 mins technical interview with two team members
  • Stage 4 - 45 min final with two executives

Benefits

  • 25 days holiday (plus take your public holiday allowance whenever works best for you)
  • An extra day’s holiday for your birthday
  • Annual leave is increased with length of service, and you can choose to buy or sell up to five extra days off
  • 16 hours paid volunteering time a year
  • Salary sacrifice, company enhanced pension scheme
  • Life insurance at 4x your salary & group income protection
  • Private Medical Insurance with VitalityHealth including mental health support and cancer care. Partner benefits include discounts with Waitrose, Mr&Mrs Smith and Peloton
  • Generous family-friendly policies
  • Perkbox membership giving access to retail discounts, a wellness platform for physical and mental health, and weekly free and boosted perks
  • Access to initiatives like Cycle to Work, Salary Sacrificed Gym partnerships and Electric Vehicle (EV) leasing

About Us

You may be put off applying for a role because you don't tick every box. Forget that! While we can’t accommodate every flexible working request, we're always open to discussion. So, if you're excited about working with us, but aren’t sure if you're 100% there yet, get in touch anyway. We’re on a mission to radically reshape banking – and that starts with our brilliant team. Whatever came before, we’re proud to bring together people of all backgrounds and experiences who love working together to solve problems.

Starling Bank is an equal opportunity employer, and we’re proud of our ongoing efforts to foster diversity & inclusion in the workplace. Individuals seeking employment at Starling Bank are considered without regard to race, religion, national origin, age, sex, gender, gender identity, gender expression, sexual orientation, marital status, medical condition, ancestry, physical or mental disability, military or veteran status, or any other characteristic protected by applicable law. 

When you provide us with this information, you are doing so at your own consent, with full knowledge that we will process this personal data in accordance with our Privacy Notice. By submitting your application, you agree that Starling Bank will collect your personal data for recruiting and related purposes. Our Privacy Notice explains what personal information we will process, where we will process your personal information, its purposes for processing your personal information, and the rights you can exercise over our use of your personal information.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.