Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist - Credit Behaviours

New Day
City of London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

What will you be doing day-to-day?

  • Use sophisticated statistical and machine learning techniques to identify new trends and relationships in data.
  • Harvest, wrangle and prototype new data sources internally and external to NewDay to create new value for NewDay and our customers.
  • Provide quality and detailed data science outputs, sharing and following up with as much detail as appropriate or requested by senior managers.
  • Develop knowledge of all relevant data resources within NewDay and in the wider Credit Industry.
  • Governance: support the models throughout their lifecycle from conception, development, implementation, testing and monitoring, with the required level of documentation to follow internal procedures and standards.

Your Skills and Experience

ESSENTIAL

  • At least a BSc or higher university degree in a data science related field (e.g. machine learning, statistics, mathematics)
  • Proficiency in statistical data modelling techniques.
  • Proficiency with Python, including experience with statistics/machine learning packages such as scikit-learn, pandas, numpy, etc.
  • Good SQL/data manipulation skills required including cleaning and managing data.
  • Experience in data visualisation and communication.
  • Experience with working with raw datasets and perform data wrangling pre-modelling.
  • Analytical and problem-solving skills.

DESIRABLE

  • MSc or PhD in Data Science related field (e.g. Machine Learning, Statistics, Mathematics)
  • Experience within a regulated financial services organization.
  • Ability to present sophisticated findings clearly, adapting the level of detail to the audience.
  • Experience in supporting model deployment and working with DevOps/Implementation teams.

Your Personal Attributes

  • Self-motivated, comfortable working in a fast-paced environment where priorities evolve.
  • Honest and hardworking with a will to learn as well as develop others.
  • Strong sense of accountability and ownership, with great organizational, planning and time management skills.
  • Passionate about modelling and techniques to drive value from data.
  • Personable with excellent interpersonal & written communication skills.
  • Ability to build strong and effective working relationships with people across all levels of the organisation.
  • Ability to embrace company culture and embed into day-to-day interactions.
  • Great team spirit, supporting team and colleagues on tasks big and small.

We work with Textio to make our job design and hiring inclusive. Permanent


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.