Data Scientist (Climate & Geospatial)

ZipRecruiter
London
1 week ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist | London | AI-Powered SaaS Company

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Job Description

Data Scientist – Climate & Geospatial | Financial Services | London (Hybrid)

Location:London, UK

Employment Type:Full-time | Hybrid

We're looking for a talentedData Scientist / Senior Data Scienctistwith a passion for climate risk and geospatial data to join our clients growing analytics team in London. If you're excited about turning complex environmental datasets into actionable insights for the FS sector, we want to hear from you.

About the Role

In this role, you'll work at the intersection ofclimate science, geospatial analysis, and insurance risk modeling, helping their clients better understand and manage the impact of physical climate risk. You'll be building scalable models and tools that directly support underwriting, portfolio risk management, and strategic planning in a changing climate.

What You'll Do

  • Analyse and model climate and natural catastrophe datasets (e.g. flood, wildfire, storm, sea-level rise)
  • Work with large-scalegeospatial data(satellite imagery, GIS layers, remote sensing)
  • Apply machine learning techniques to identify risk patterns and trends
  • Develop tools to visualise and interpret climate risk data for technical and non-technical audiences
  • Collaborate with insurance and reinsurance clients on climate-related risk assessments
  • Stay on top of the latest climate science and ESG regulations impacting the FS industry

What We're Looking For

  • Experience indata science, ideally in climate, geospatial, or catastrophe risk
  • Proficiency inPython,R, or similar, with experience using libraries E.G pandas, scikit-learn
  • Experience with climate models (e.g. CMIP6, ERA5) or catastrophe models is a strong plus
  • Degree in a quantitative field: data science, climatology, environmental science, geoinformatics, or similar

Why Join Us?

  • Be part of a mission-driven team tackling real-world climate challenges
  • Work with industry-leading datasets and tools
  • Flexible hybrid work model (central London office)
  • Competitive salary, bonus, and benefits package
  • Career growth opportunities in a rapidly expanding area of climate risk analytics

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!