Data Scientist - Bristol

Bristol
3 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - London

Data Scientist | London | AI-Powered SaaS Company

Data Scientist - ML & AI projects - Bristol - J12909
Competitive annual salary of between £50,000 and £65,000 dependent on experience
Hybrid working - Bristol office base (2 days a week currently, expected to increase to 3 days)

No Visa Sponsorship Available - All applicants must have full and indefinite right to work in the UK

Working with an exceptional employer, looking to recruit a highly skilled individual to join their dynamic and innovative Data Science team.

This role will give you the opportunity to leverage your expertise in data analysis and machine learning to drive actionable insights and contribute to the development of cutting-edge solutions that improve the health and well-being of their customers.

Working on some extremely exciting projects in the healthcare sector, using Generative AI and MLOps techniques to progress and develop your career in Data Science.

What you'll be doing:
• Gather and clean large volumes of structured and unstructured data from various sources.
• Apply statistical, machine learning and traditional and generative AI techniques to analyse data, identify patterns, and develop predictive models.
• Create visual representations of data to communicate insights and findings to non-technical stakeholders.
• Interpret data analysis results to provide actionable insights and recommendations for business decisions.
• Work closely with cross-functional teams to understand business needs, develop solutions, and implement data-driven strategies.
• Stay updated with the latest trends and advancements in data science, machine learning, and related technologies to improve methodologies and processes.
• Ensure compliance with data privacy regulations and ethical standards in handling sensitive information.

What you'll bring:
• Previous applied experience within a data science role.
• Demonstratable knowledge of extracting business value from data science using both quantitative and qualitative metrics.
• Strong mathematical and statistical background.
• An ability to understand and translate data into actionable insights for the business.
• Strong working knowledge of Python and data science packages such as Scikit learn, Keras, Tensor flow and PySpark.
• Good understanding of industry standard MLOps capabilities.
• Understanding of the financial industry, in particular insurance, would be advantageous.

If you're excited about the prospect of using data to make a meaningful difference in people's lives, we want to hear from you!

Alternatively, you can refer a friend or colleague by taking part in our fantastic referral schemes! If you have a friend or colleague who would be interested in this role, please refer them to us. For each relevant candidate that you introduce to us (there is no limit) and we place, you will be entitled to our general gift/voucher scheme.
Datatech is one of the UK's leading recruitment agencies in the field of analytics and host of the critically acclaimed event, Women in Data. For more information, visit our website: (url removed)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.