Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist

Mackin Talent
City of London
4 days ago
Create job alert

London, United Kingdom | Posted on 11/20/2025


Our client in London is seeking an experienced Data Scientist to support the Case Quality & Evaluation (CQE) team for a 12 month hybrid contract (3 days on site, 2 days remote).


In this role, you will leverage data, analytics, and statistical rigor to shape measurement frameworks that improve the global customer support experience. You will collaborate with cross-functional partners – Operations, Engineering, Product, and Data Engineering – to deliver trustworthy measurement, actionable insights, and meaningful business impact.


About the Team

The Case Quality & Evaluation (CQE) team enables our client to deliver exceptional customer support by defining, measuring, and optimizing key support quality metrics. CQE owns the development of frameworks for customer satisfaction (CSAT), operational quality, and ground‑truth labeling. The team partners closely with engineering and product groups to enhance support operations and accelerate AI‑powered solutions. Through robust measurement and deep analytical insights, CQE drives improvements in customer experience and operational effectiveness across the company’s global support ecosystem.


What You’ll Work On (Day‑to‑Day)
Measurement & Modeling

  • Design, implement, and validate metrics such as CSAT and operational quality to accurately reflect customer support performance.
  • Develop statistical models and measurement strategies that guide improvements in support quality and customer experience.

Data Quality, Coverage & Labeling

  • Build and refine sampling methodologies and validation processes.
  • Ensure pipeline accuracy, data integrity, and comprehensive measurement coverage across all support channels.
  • Support ground‑truth creation through expert labeling processes and quality frameworks.

Cross-Functional Collaboration

  • Partner with quality & evaluation teams, product managers, engineers, and operations to define success metrics and understand the impact of new features and workflows.
  • Ensure measurement infrastructure is scalable, reliable, and integrated into reporting and dashboard systems.
  • Analyze large, complex datasets to surface trends, insights, and recommendations.
  • Communicate findings to technical and non‑technical stakeholders.
  • Continuously optimize measurement tools, frameworks, and processes.

Key Projects You’ll Support

  • Defining and refining success metrics with product managers.
  • Assessing the impact of product feature launches on support quality.
  • Driving insights for high‑touch support improvement initiatives.

Requirements

  • 5+ years of experience in Data Science or a similar analytical role.
  • Strong proficiency in Python, R, SQL, and modern data analysis tools.
  • Demonstrated experience working closely with product teams and contributing to product decision‑making.
  • Expertise in statistical analysis, modeling, and data visualization.
  • Ability to translate complex analyses into clear, actionable insights for stakeholders.
  • Bachelor’s degree or higher in Computer Science, Statistics, Mathematics, or a related field.

Preferred Qualifications

  • Strong collaboration and stakeholder‑influencing skills.
  • Experience transforming data insights into product strategy inputs.
  • Previous experience in support operations or integrity environments.
  • Healthcare contribution and inclusion in company pension scheme.
  • Work laptop and phone.
  • 25 days annual leave (pro‑rata) plus paid bank holidays.
  • Expanding workforce with potential for career progression for top performers.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.