National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist

XCM
Leeds
2 weeks ago
Create job alert

Data Scientist

Full remote (based in the UK)

£30,000 depending on experience

Benefits package.


Primary Purpose


  • Development of XCM’s machine learning solutions
  • Delivery of client machine learning models.
  • Delivery of associated documentation and content on each project.
  • Communicating findings to internal and external stakeholders
  • Enhancing the client’s ROI with XCM through data driven solutions tailored to their specific business requirements.
  • Supporting BAU and planned analytics on client roadmaps when needed.
  • Supporting XCM’s analysts in statistical techniques.


Key Responsibilities


  • Working closely with the lead Data Scientist and Director of Analytics to develop a suite of machine learning solutions.
  • Involvement in the design, creation, productionising, testing, and maintenance of machine learning solutions.
  • Developing data models to serve the needs of each client by analysing and predicting customer interactions; including but not limited to, customer sales and their purchasing behaviour, web traffic and user behaviour, email performance, and social media trends.
  • Creation of technical and user documentation, marketing and other content associated with each project.
  • Produce recommendations on how to develop the XCM data modelling roadmap.
  • Confidently present analytics and recommendations both to colleagues and clients.
  • Execute larger, complex statistical projects to produce strategic actionable recommendations.
  • Lead the necessary actions off the back of analytical recommendations with other members of the analytic, campaign and client management team as required.
  • Respond to ad-hoc data requests as required.
  • Provide commitment to leadership and continuous improvement.
  • Delivery of your agreed objectives.
  • Management of your personal development programme.
  • Delivery of agreed standards & discipline.
  • Management of your quarterly appraisal process & documentation.



Experience & Qualities


  • Degree level qualification or equivalent in a mathematical or computing discipline.
  • 2+ years’ experience writing production level python code
  • Highly proficient with numpy, pandas, sklearn
  • Strong understanding of machine learning algorithms and workflow
  • Experience scoping and developing machine learning projects such as recommender systems
  • Experience with containerised deployment (docker)
  • Strong understanding of CI/CD processes and version control
  • Proficient in SQL analysis.
  • Fully literate in Microsoft Office package.



Attributes


  • Able to think abstractly and develop novel solutions to problems.
  • Able to quickly learn new programming languages, mathematical concepts, and software.
  • A desire to find the best solution to a challenge through collaborative working.
  • Genuinely interested in data science / machine learning / AI.
  • Strong communication skills.
  • Ability to explain and present modelling concepts to non-technical personnel.
  • Curious, proactive, organised, and methodical, with an attention to detail.
  • Ambitious, enthusiastic, self-motivated, and the confidence to lead projects.

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - AI / ML, Python, Scripting, Cyber Security

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.