Data Scientist, AI/ML, Associate

Cerberus Capital Management
London
3 days ago
Create job alert

Data Scientist at Cerberus Capital Management


As aData Scientistin our AI team, you will contribute to the firm’s objectives by delivering rapid and scalable solutions that unlock value for Cerberus desks, portfolio companies, or other businesses/investments. You’ll do this by designing, implementing, and deploying machine learning systems that help our desks and portfolio companies make better business decisions and ultimately drive value. You may also participate in due diligence or pricing analyses of future investments, etc.


Responsibilities:


Build and deliver AI systems as an individual contributor and in teams.

  • Delivery focused:Help design solutions using a rigorous hypothesis-based approach, partner with cross-functional technical teams, and execute the development with a focus on impact.
  • Agile and pragmatic: Rapidly and iteratively deliver results in high-pressured projects, with skill and creativity to pivot quickly as needed to create the most value.
  • Contemporary and innovative approach:Develop novel solutions using modern platforms, languages, and tools; build IP into re-usable software packages.
  • Structured approach:Bring order to disparate requirements with high tolerance for ambiguity, very strong problem-solving ability, and excellent stakeholder engagement skills.


Communicate results in a compelling way to senior business executives.

  • Communicator:Break down complex concepts and problems into succinct components for a range of clients and colleagues at all levels of seniority.
  • Storytelling:Be a storyteller capable of delivering insights in a compelling manner.


Build a reputation as a trusted technologist and member of the team.

  • Technology polymath:experience with a wide range of technology and can learn and develop any solutions across the full data science lifecycle and application stack.
  • Test & learn mentality:Challenge our current best thinking, test ideas, and iterate rapidly.
  • Creativity:Invent new analyses and methods to solve key business problems.
  • Trusted voice:Establish reputation of delivering on commitments; build high-trust relationships.
  • Expertise:Develop deep subject matter expertise in valuable areas for the business.


Requirements:

  • 4+ years of experience
  • A degree in STEM field or equivalent and advanced degree.
  • Strong knowledge of statistics, machine learning, forecasting, NLP, computer vision, optimisation.
  • Python programmer with experience building data pipelines and statistical / machine learning models. Additional languages preferred, particularly HTML+CSS+JavaScript, or low-level compiled languages such as C/C++.
  • Proficiency in SQL. Ability to write efficient and robust queries.
  • Experience with DevOps process for model deployment and unit testing.
  • Proof of work in cloud environments, especially MS Azure, is a plus.
  • Proof of work in collaborative development environment (Git, Azure DevOps, JIRA).
  • Strong intellectual curiosity, mathematical problem solving, and effectiveness in a team.


About Us:

Established in 1992, Cerberus Capital Management, L.P., together with its affiliates, is one of the world's leading private investment firms. Through its team of investment and operations professionals, Cerberus specializes in providing both financial resources and operational expertise to help transform undervalued and underperforming companies into industry leaders for long-term success and value creation. Cerberus holds controlling or significant minority interests in companies around the world.


The Firm’s proprietary operations team, Cerberus Operations and Advisory Company, LLC (COAC), employs world-class operating executives to support Cerberus’ investment teams in the following areas: sourcing opportunities, conducting highly informed due diligence, taking interim management roles, monitoring the performance of investments and assisting in the planning and implementation of operational improvement initiatives at Cerberus’ portfolio companies.


Cerberus Technology Solutions is an operating company and subsidiary of Cerberus Capital Management focused exclusively on leveraging emerging technology, data, and advanced analytics to drive transformations. Our expert technologists work closely with Cerberus investment and operating professionals across our global businesses and platforms on a variety of operating initiatives targeted at improving systems and generating value from data.

Related Jobs

View all jobs

Lead Cyber Security Engineer

Data Scientist at PwC (Sponsorship Available) ...

Data Scientist

Data Scientist

Data Science Manager

Senior Policy Data Scientist

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!