Data Scientist (AI Engineer)

Tel Aviv
1 month ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist Team Leader - BIG DATA

Data Scientist (AI Engineer)
Salary dependent on skills and experience plus share options in a hyper-growth startup.
Hybrid – office in Central Tel Aviv.
The Company
Streamlining business development for Dealmakers.
This SaaS startup aims to tackle inefficiencies, disconnected systems, and missed opportunities to help organisations grow smarter and faster. With innovation at its core, the platform strives to simplify business growth using cutting-edge AI technology.
The Role
Join a small, dynamic, and growing team of experienced professionals dedicated to revolutionising business development. As the Founding AI Engineer, you will work closely with the co-founders to rapidly iterate on product ideas and help shape the technical vision from the ground up. This is a hands-on role that requires deep technical expertise, entrepreneurial drive, and the ability to turn ideas into scalable solutions.
You’ll have the opportunity to build the product from the earliest stages, solving real customer problems, and playing a key role in the company’s journey towards achieving its business milestones.
Key Responsibilities but not limited to:

  • Collaborate with cross-functional teams to identify business opportunities and design data-driven solutions to address them.
  • Develop, fine-tune, and deploy machine learning and deep learning models, including neural networks, that enhance the platform’s insights and intelligence.
  • Integrate large language models (LLMs) into our product pipeline, exploring cutting-edge techniques such as Retrieval-Augmented Generation (RAG) for improved data insights and user interaction.
  • Leverage LLM frameworks like LangChain to build and manage LLM-based workflows, adapting pipelines to respond to evolving data and user needs.
  • Perform exploratory data analysis, data processing, and feature engineering to support model building.
  • Partner with engineering teams to integrate data solutions into the product, ensuring scalable and reliable deployment.
  • Create and manage data pipelines, ensuring data integrity, quality, and compliance with industry standards (SOC 2, ISO 27001).
  • Conduct experiments, validate hypotheses, and iteratively improve models based on real-world feedback.
  • Communicate findings and insights to non-technical stakeholders to inform decision-making.
  • Establish best practices in data science, data science, ML/AI, and deep learning, setting standards for a growing data team.
    Key Skills:
  • Fluency in English.
  • Minimum 3-5 years of professional or academic experience in data science, machine learning, AI, deep learning etc.
  • Strong proficiency in Python, with experience using machine learning and deep learning libraries (e.g., Scikit-learn, TensorFlow, PyTorch).
  • Familiarity with key machine learning algorithms, including but not limited to decision trees, gradient boosting, clustering, and neural networks for complex data modelling.
  • Practical experience deploying AI/ML models, including LLMs, using techniques such as RAG, fine-tuning, and prompt engineering.
  • Familiarity with LLM pipelines and frameworks such as LangChain to enhance product capabilities and model integration.
  • Strong experience with data analytics, statistical modelling, and predictive analytics.
  • Solid understanding of SQL and experience with relational and non-relational databases; familiarity with cloud data solutions (e.g., AWS Redshift, Azure Synapse) is a plus.
  • Experience working with large datasets and data pipeline frameworks (e.g., Spark, Airflow).
  • Knowledge of cloud platforms (AWS, Azure) and scalable infrastructure for ML, deep learning, and LLM pipelines.
  • Experience with LLMs, NLP, LLM techniques such as RAG.
  • Bonus: Interest or experience in M&A, finance or business strategy.
  • An entrepreneurial mindset with a passion for using data to drive innovation and solve real business challenges.
    Why Join us?
    This role is ideal for someone who is excited about building a product from the ground up, working in a fast-moving startup, and solving real customer problems. You'llhave the opportunity to grow within the company as we scale and make a meaningful impact on the future of dealmaking.
    Interested? If you feel that you possess the relevant skills and experience, then please submit your CV.
    INDHS

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Leadership for Managers: Strategies to Motivate, Mentor, and Set Realistic Goals in Data-Driven Teams

Machine learning (ML) has become an indispensable force in the modern business world, influencing everything from targeted marketing campaigns to advanced medical diagnostics. As industries integrate predictive algorithms and data-driven decision-making into their core operations, the need for effective leadership in machine learning environments has never been greater. Whether you’re overseeing a small team of data scientists or spearheading an enterprise-scale ML project, your leadership style must accommodate rapid innovation, complex problem-solving, and diverse stakeholder expectations. This guide provides actionable insights into how you can motivate, mentor, and establish achievable goals for your machine learning teams—ensuring they thrive in data-driven environments.

Top 10 Books to Advance Your Machine Learning Career in the UK

Machine learning (ML) remains one of the fastest-growing fields within technology, reshaping industries across the UK from finance and healthcare to e-commerce, telecommunications, and beyond. With increasing demand for ML specialists, job seekers who continually update their knowledge and skills hold a significant advantage. In this article, we've curated ten essential books every machine learning professional or aspiring ML engineer in the UK should read. Covering foundational theory, practical implementations, advanced techniques, and industry trends, these resources will equip you to excel in your machine learning career.

Navigating Machine Learning Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Machine learning (ML) has swiftly become one of the most in-demand skill areas across industries, with companies leveraging predictive models and data-driven insights to solve challenges in healthcare, finance, retail, manufacturing, and beyond. Whether you’re an early-career data scientist aiming to break into ML, a seasoned engineer branching into deep learning, or a product manager exploring AI-driven solutions, machine learning career fairs offer a powerful route to connect with prospective employers face-to-face. Attending these events can help you: Network with hiring managers and technical leads who make direct recruitment decisions. Gain insider insights on the latest ML trends and tools. Learn about emerging job roles and new industry verticals adopting machine learning. Showcase your interpersonal and communication skills, both of which are increasingly important in collaborative AI/ML environments. However, with many applicants vying for attention in a bustling hall, standing out isn’t always easy. In this detailed guide, we’ll walk you through how to prepare meticulously, pitch yourself confidently, ask relevant questions, and follow up effectively to land the machine learning opportunity that aligns with your ambitions.