Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist (AI Engineer)

Tel Aviv
9 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist (AI Engineer)
Salary dependent on skills and experience plus share options in a hyper-growth startup.
Hybrid – office in Central Tel Aviv.
The Company
Streamlining business development for Dealmakers.
This SaaS startup aims to tackle inefficiencies, disconnected systems, and missed opportunities to help organisations grow smarter and faster. With innovation at its core, the platform strives to simplify business growth using cutting-edge AI technology.
The Role
Join a small, dynamic, and growing team of experienced professionals dedicated to revolutionising business development. As the Founding AI Engineer, you will work closely with the co-founders to rapidly iterate on product ideas and help shape the technical vision from the ground up. This is a hands-on role that requires deep technical expertise, entrepreneurial drive, and the ability to turn ideas into scalable solutions.
You’ll have the opportunity to build the product from the earliest stages, solving real customer problems, and playing a key role in the company’s journey towards achieving its business milestones.
Key Responsibilities but not limited to:

  • Collaborate with cross-functional teams to identify business opportunities and design data-driven solutions to address them.
  • Develop, fine-tune, and deploy machine learning and deep learning models, including neural networks, that enhance the platform’s insights and intelligence.
  • Integrate large language models (LLMs) into our product pipeline, exploring cutting-edge techniques such as Retrieval-Augmented Generation (RAG) for improved data insights and user interaction.
  • Leverage LLM frameworks like LangChain to build and manage LLM-based workflows, adapting pipelines to respond to evolving data and user needs.
  • Perform exploratory data analysis, data processing, and feature engineering to support model building.
  • Partner with engineering teams to integrate data solutions into the product, ensuring scalable and reliable deployment.
  • Create and manage data pipelines, ensuring data integrity, quality, and compliance with industry standards (SOC 2, ISO 27001).
  • Conduct experiments, validate hypotheses, and iteratively improve models based on real-world feedback.
  • Communicate findings and insights to non-technical stakeholders to inform decision-making.
  • Establish best practices in data science, data science, ML/AI, and deep learning, setting standards for a growing data team.
    Key Skills:
  • Fluency in English.
  • Minimum 3-5 years of professional or academic experience in data science, machine learning, AI, deep learning etc.
  • Strong proficiency in Python, with experience using machine learning and deep learning libraries (e.g., Scikit-learn, TensorFlow, PyTorch).
  • Familiarity with key machine learning algorithms, including but not limited to decision trees, gradient boosting, clustering, and neural networks for complex data modelling.
  • Practical experience deploying AI/ML models, including LLMs, using techniques such as RAG, fine-tuning, and prompt engineering.
  • Familiarity with LLM pipelines and frameworks such as LangChain to enhance product capabilities and model integration.
  • Strong experience with data analytics, statistical modelling, and predictive analytics.
  • Solid understanding of SQL and experience with relational and non-relational databases; familiarity with cloud data solutions (e.g., AWS Redshift, Azure Synapse) is a plus.
  • Experience working with large datasets and data pipeline frameworks (e.g., Spark, Airflow).
  • Knowledge of cloud platforms (AWS, Azure) and scalable infrastructure for ML, deep learning, and LLM pipelines.
  • Experience with LLMs, NLP, LLM techniques such as RAG.
  • Bonus: Interest or experience in M&A, finance or business strategy.
  • An entrepreneurial mindset with a passion for using data to drive innovation and solve real business challenges.
    Why Join us?
    This role is ideal for someone who is excited about building a product from the ground up, working in a fast-moving startup, and solving real customer problems. You'llhave the opportunity to grow within the company as we scale and make a meaningful impact on the future of dealmaking.
    Interested? If you feel that you possess the relevant skills and experience, then please submit your CV.
    INDHS

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.