Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist - active NPPV3 required

Farringdon
7 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

PLEASE NOTE - To be considered you need to possess active NPPV3 security clearance

THE ROLE

To develop and implement advanced analytical models and algorithms to extract actionable insights from complex crime and intelligence data, supporting data-driven decision-making in crime prevention, investigations, and public safety. This involves leveraging statistical modelling, machine learning, and other data science techniques to identify patterns, predict trends, and generate intelligence that informs policing strategies.

EXPERIENCE:

  • 5+ years of experience in data science, Statistics or a related field.

  • Proven experience in developing and implementing data science solutions to real world problems, preferably in a public sector.

  • Good experience of working with large and complex datasets and handling sensitive data.

  • Experience with predictive modelling, machine learning, data visualizations and dashboards.

    SKILLS ATTRIBUTES

  • Proficiency in statistical modelling and machine learning techniques. This includes skills in regression analysis, classification, clustering, and other relevant techniques.

  • Programming skills in Python and R, with experience in data science libraries (eg, scikit-learn, pandas, TensorFlow) for data manipulation, analysis, and model development.

  • Experience with data visualisation tools (eg, Tableau, Power BI) to communicate data insights effectively.

  • Strong understanding of database concepts and SQL for accessing and manipulating data from various sources.

  • Excellent analytical and problem-solving skills. Ability to identify patterns, draw conclusions, and develop solutions to complex problems.

  • Strong communication and presentation skills essential for communicating data science findings to diverse audiences.

  • Ability to work effectively in a collaborative team environment in a team-based environment.

  • Understanding of geospatial analysis is a plus

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.