National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist

Aquent
uk
11 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist - AI / ML, Python, Scripting, Cyber Security

Data Scientist - Inside IR35 contract

Data Scientist - Time Series Forecasting

Data Scientist

Data Scientist

Overview

Placement Type:

Temporary

Compensation:

£361-£400 per day(PAYE Inside IR35)

Start Date:

Asap

Data Scientist, Analytics Duties

Data Scientist (Analytics) is to help teams make better data-driven decisions. This is done in the following way:

Collect, organize, interpret, and summarize statistical data in order to contribute to the design and development of products Apply your expertise in quantitative analysis, data mining, and the presentation of data to see beyond the numbers and understand how our users interact with both our consumer and business products Partner with Product and Engineering teams to solve problems and identify trends and opportunities Inform, influence, support, and execute our product decisions and product launches May be assigned projects in various areas including, but not limited to, product operations, exploratory analysis, product influence, and data infrastructure Work on problems of diverse scope where analysis of data requires evaluation of identifiable factors Demonstrate good judgment in selecting methods and techniques for obtaining solutions Perform data analyses on tactical (feature-level) and strategic (team objectives and goals) work to drive team direction Develop strategic narrative based on analytical insights and priorities Think about key questions and metrics to define success for any product/feature.In connection with these duties, may apply knowledge of the following:Performing quantitative analysis including data mining on highly complex data sets Data querying languages, such as SQL, scripting languages, such as Python, or statistical or mathematical software, such as R, SAS, or Matlab Applied statistics or experimentation, such as A/B testing, in an industry setting Communicating the results of analyses to product or leadership teams to influence strategy Machine learning techniques ETL (Extract, Transform, Load) processes Relational databases Large-scale data processing infrastructures using distributed systems Quantitative analysis techniques, including clustering, regression, pattern recognition, or descriptive and inferential statistics.

THE ROLE

We have 3 areas in Experiences: Organic (focusing on consumers), Paid (focusing on business/advertisers), Platform (infra to help scale the other two)

We are looking for a Data Scientist to join our Paid Experiences team. Specifically, this will work with our Engineers, Designers and Product Managers to: Understand what integrity experiences prevent advertisers from running ads successfully Help advertisers (self-)remediate to unblock their campaigns, while protecting the organisation from harm

WHO WE ARE LOOKING FOR

Excited about giving millions of users a day a more supportive integrity experience when they face enforcements or encounter harm on the platform Excited about optimising systems for scale at the intersection of user facing experiences and platform capabilities Enjoys thinking through how we best form partnerships with other teams and how scalable solutions should be governed effectively. Enjoys getting their hands dirty to understand data and system disconnects and can drive insightful root-cause-analysis

Minimum Qualifications

Requires a Master’s degree in Computer Science, Engineering, Information Systems, Analytics, Mathematics, Economics, Physics, Applied Sciences, or a related field. Requires knowledge or experience in the following: Performing quantitative analysis including data mining on highly complex data sets. Data querying language: SQL Scripting language: Python Statistical or mathematical software including one of the following: R, SAS, or Matlab Applied statistics or experimentation, such as A/B testing, in an industry setting Machine learning techniques Quantitative analysis techniques, including one of the following: clustering, regression, pattern recognition, or descriptive and inferential statistics
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.