Data Scientist

The Data Gals | by AI Connect
Edinburgh
1 day ago
Create job alert

Graduate Data Scientist - Edinburgh (hybrid)


Up to £30,000


The Data Gals are looking for a bright, curious graduate data scientist at the start of their career. This role is ideal for someone who doesn’t want to sit behind the scenes coding in isolation, but instead wants to work closely with clients and stakeholders, translating complex analysis into clear, practical insights that support commercial decision making.


You’ll be supported through structured training, mentoring, and hands‑on project work, giving you exposure across the full data science lifecycle — from dashboards and insight generation through to statistical modelling and machine learning.


What you’ll be doing

  • Working on a wide range of data science projects across different sectors, gaining broad exposure early in your career
  • Collaborating with business and client stakeholders to understand their challenges and define how data can help
  • Exploring, analysing, and interpreting data to uncover patterns, trends, and actionable insightsDesigning analytical solutions that may include insight deep dives, dashboards, reports, or predictive models
  • Building and delivering data driven outputs, then clearly presenting findings in a way that non-technical audiences can understand
  • Continuing to engage with stakeholders after delivery to track impact and refine solutions
  • Gradually progressing towards owning projects end‑to‑end, from initial scoping through to delivery

What we’re looking for

  • Genuinely passionate about data, problem solving, and continuous learning
  • Comfortable explaining technical ideas in simple, business‑friendly language
  • Motivated, proactive, and driven to do high quality work
  • Confident engaging with people and open to client facing responsibilities
  • Curious and inquisitive — you ask why, not just how
  • Happy working independently or as part of a collaborative team

Technical foundations

You don’t need to be an expert yet, but you should have a strong academic grounding and hands‑on exposure to:



  • Data analysis and trend identification
  • Programming experience from your degree or projects (e.g. Python, SQL, or R)
  • Data visualisation and reporting (Excel, Power BI, Tableau or similar tools)
  • Core statistical concepts such as regression, classification, hypothesis testing, and confidence intervals

You should have completed at least one substantial project (academic or otherwise) where you worked with data, derived insights or models, and presented your findings.


Qualifications

  • A first‑class (or strong upper second) degree in a numerate subject such as Mathematics, Statistics, Data Science, or a related scientific discipline

Why this role?

  • Broad exposure across insight, visualisation, analytics, and machine learning — not boxed into one area
  • Strong emphasis on learning, development, and mentorship
  • Real client interaction and commercial context from day one
  • A clear pathway to grow into a well rounded data scientist

Visa sponsorship is NOT available for candidates


Apply today or send your CV to


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist (Globally Renowned Retail Group)

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist (Predictive Modelling) – NHS

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.