National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist

Midlands and Lancashire Commissioning Support Unit
London
3 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist - AI / ML, Python, Scripting, Cyber Security

Data Scientist - Inside IR35 contract

Data Science Placement Programme

Data Science Placement Programme

Employer NHS Midlands and Lancashire Commissioning Support Unit

Employer type NHS

Site 10 South Colonnade

Town Canary Wharf

Salary £37,338 - £44,962 per annum

Salary period Yearly

Closing 17/02/2025 23:59

Interview date 10/03/2025

Data ScientistNHS AfC: Band 6Job overview

The data scientist / econometrician provides vital data and insights to inform decisions, driving improvements in healthcare and impacting millions of people. You will work in a collaborative environment, with data scientists, health economists, project managers, data engineers and other healthcare professionals to extract, transform, and clean data ready for analytical projects. You will work on various research projects as commissioned by our clients under a consultancy model, which will take up to 80% of your time (this may change as the work of the unit evolves).

Main duties of the job

Plan, organise, and deliver data and analytics for projects, including:

  • Building predictive models to forecast admissions/discharges, optimising resources and reducing bottlenecks in emergency departments.
  • Analysing health disparities across populations by socio-economic factors, geography, or access to care.
  • Applying NLP to unstructured data (e.g., clinician notes, patient feedback) for insights into patient needs.
  • Using machine learning to predict outcomes like readmission rates or disease progression, supporting proactive care.
  • Developing econometric models to assess the impact of healthcare policies on health, utilisation, and costs.

Analyse datasets to identify trends, apply statistical models to solve business problems, and choose appropriate methods for data processing. Follow and improve best practices in data analysis and econometrics. Manage, adapt, and enhance software systems used for analysis.

Develop data and analytics policies affecting HEU, implementing changes once approved. Quality-assure team outputs, ensuring high standards. Act as a subject-matter expert, working independently within guidelines and seeking advice when needed.

Participate in business development meetings, lead proposal writing on data science aspects, understand client aims, plan solutions, and estimate project costs.

Working for our organisation

The HEU is an NHS consultancy of 17 team members across three teams: Health Economics, Service Delivery and Data and Analytics.

You will sit within the data and analytics team, led by the chief analyst and reporting to the lead data scientist/econometrician.

During projects you will work closely across the HEU team, with data scientists, analysts, project managers, and health economists.

You will engage with our clients, partners and stakeholders throughout projects, understanding their needs and communicating your work.

Detailed job description and main responsibilities

Data science function

· Plan, organise and deliver the data and analytic aspects of projects. Projects could include:

o Building predictive models to forecast patient admissions and discharges, helping optimise hospital resources and reduce bottlenecks in areas like emergency departments.

o Analysing disparities in health outcomes across different populations, identifying factors like socio-economic status, geography, or access to care that contribute to inequalities.

o Applying NLP techniques to unstructured text data, such as clinician notes or patient feedback, to extract key information and improve understanding of patient needs and outcomes.

o Using supervised and unsupervised machine learning techniques to predict outcomes such as readmission rates, disease progression, or patient deterioration, aiding proactive care.

o Developing econometric models to evaluate the effects of healthcare policies or interventions on key outcomes, such as patient health, hospital utilisation, or treatment costs.

· Analyse datasets to identify trends and patterns, and applies statistical models to solve business problems; make decisions on appropriate methods for data cleaning, processing, and analysis.

· Follow data analysis and econometrics best practices and contribute to the ongoing development and improvement of these.

· Be able to use, adapt and improve systems and software used to deliver statistical analysis and other functions as required for projects.

· Propose and develop policies and procedures relating to data and analytics, which affect the HEU. Implement changes once agreed with the relevant person or group.

· Appraise and quality assure the analytical outputs from the team.

· Act as a specialist in own area and achieve own objectives. Act independently within established guidelines, escalating and seeking advice as required.

· Undertake business development meetings, supported by colleagues. Lead on and contribute to proposal writing, with a focus on data science aspects of the work. This includes understanding the client aims and scope of project, identifying how we can achieve this, and calculating cost.

Team-working

· Provide guidance to junior team members, demonstrating best practices and assisting with technical challenges.

· Proactively provide training and share knowledge on areas of expertise to the wider unit.

· Deliver training to clients on own area of expertise.

· Work independently on data projects within established guidelines, with advice available when required.

Communication and networking

· Communicate complex information and insights to non-technical stakeholders in a way which can be easily understood. This may be written or oral.

· Write high-quality reports which effectively communicate our findings in an engaging way, focussing on impact and achieving our clients’ goals.

· Be able to synthesise multiple sources to communicate on complex issues.

· Understand client needs and objectives, working with the client and team to find solutions and achieve these goals.

· Make judgements where there are conflicting views and make decisions where necessary, working with all parties to achieve buy-in.

· Contribute to other areas of the HEU to support our wider development as a unit and as a team.

· Proactively work with the senior communications manager to help promote our work, contributing to the communications plan of the HEU and sharing our work so that we contribute to the development of analytics in the NHS.

Project and financial management

· Lead on small projects and work with others to deliver projects to time, scope, budget and quality.

· Plan and organise complex data analysis tasks, ensuring that project timelines are met; adjusts activities based on evolving data requirements.

· Ensure that projects are delivered to budget, including the cost of own time spent on a project, and where potential for budget deviation is identified, flag the issue as early as possible.

· Horizon-scan and identify potential issues before they occur, and work to resolve issues where they do occur.

· Follow all business processes of the HEU.

Person specificationExperience

  • Bachelor's degree in a related STEM subject or equivalent level of experience of working at a similar level in a similar setting
  • Experience of extracting data, manipulating, understanding, transforming, wrangling, cleaning, and storing health data
  • Ability to write well-designed code (e.g. SQL or Python) which follows good coding standards.
  • Possess foundational knowledge in data science, statistical analysis, and machine learning techniques.
  • Experience working in data and analytics functions in the NHS.

#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.