Data Scientist

Lendable
City of London
23 hours ago
Create job alert
About Lendable

Lendable is on a mission to build the world’s best technology to help people get credit and save money.We’re building one of the world’s leading fintech companies and are off to a strong start:

  • One of the UK’s newest unicorns with a team of just over 600 people
  • Among the fastest-growing tech companies in the UK
  • Profitable since 2017
  • Backed by top investors including Balderton Capital and Goldman Sachs
  • Loved by customers with the best reviews in the market (4.9 across 10,000s of reviews on Trustpilot)

So far, we’ve rebuilt the Big Three consumer finance products from scratch: loans, credit cards and car finance. We get money into our customers’ hands in minutes instead of days.

We’re growing fast, and there’s a lot more to do: we’re going after the two biggest Western markets (UK and US) where trillions worth of financial products are held by big banks with dated systems and painful processes.

Join us if you want to
  1. Take ownership across a broad remit. You are trusted to make decisions that drive a material impact on the direction and success of Lendable from day 1
  2. Work in small teams of exceptional people, who are relentlessly resourceful to solve problems and find smarter solutions than the status quo
  3. Build the best technology in-house, using new data sources, machine learning and AI to make machines do the heavy lifting

About the role

We are excited to be hiring a new Data Scientist into our team! Lendable is the market leader in real rate risk-based pricing, offering consumers transparency and product assurance at the point of application. Data Science sits at the heart of this USP, developing the credit risk models to underwrite loan and credit card products.

You will have access to the latest machine learning techniques combined with a rich data repository to deliver best in market risk models.

This role will primarily focus on our US unsecured loans and credit cards business.

Our team’s objectives

  • The data science team develops proprietary behavioural models combining state of the art techniques with a variety of data sources that inform market-facing underwriting and pricing decisions, scorecard development, and risk management.
  • Data scientists work across the business in a multidisciplinary capacity to identify issues, translate business problems into data questions, analyse and propose solutions.
  • We self‑serve with all deployment and monitoring, without a separate machine learning engineering team.
  • Design, implement, manage and evaluate experiments of products and services leading to constant innovation and improvement.

How you’ll impact those objectives

  • Learn the domain of products that Lendable serves, understanding the data that informs strategy and risk modelling is essential to being able to successfully contribute value.
  • Rigorously search for the best models that enhance underwriting quality.
  • Clearly communicate results to stakeholders through verbal and written communication.
  • Share ideas with the wider team, learn from and contribute to the body of knowledge.
  • Key Skills
  • Experience using Python and SQL.
  • Strong proficiency with data manipulation including packages like NumPy, Pandas.
  • Knowledge of machine learning techniques and their respective pros and cons.
  • Confident communicator and contributes effectively within a team environment.
  • Self driven and willing to lead on projects / new initiatives.

Nice to have

  • Prior experience of credit risk for consumer lending or credit cards, especially for the US market.
  • Interest in machine learning engineering.
  • Strong SQL and interest in data engineering.

The interview process

  • Initial call with TA
  • Take home task
  • Task debrief and case study interview
  • Final interviews with leadership team
Life at Lendable
  • The opportunity to scale up one of the world’s most successful fintech companies.
  • Best-in-class compensation, including equity.
  • You can work from home every Monday and Friday if you wish - on the other days, those based in the UK come together IRL at our Shoreditch office in London to be together, build and exchange ideas.
  • Enjoy a fully stocked kitchen with everything you need to whip up breakfast, lunch, snacks, and drinks in the office every Tuesday-Thursday.
  • We care for our Lendies’ well‑being both physically and mentally, so we offer coverage when it comes to private health insurance
  • We’re an equal‑opportunity employer and are looking to make Lendable the most inclusive and open workspace in London

Check out our blog!


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - New

Data Scientist / Software Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.