Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist

Ringway
9 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist | Edtech | £60k to £70k | Global Business

Data Scientist - Hybrid

Data Scientist - Contract

Data Scientist

Rate - £500 - £700/day Outside IR35 *TBC

Location – Fully remote

Length - 3-month contract

Position Overview

The Data Scientist will play a critical role in advancing the organisation's data analytics and machine learning capabilities, driving predictive insights and optimisation across various business units. This role is integral to designing and implementing advanced analytical solutions, supporting units such as Trading, Customer & Travel Product Development, Hospitality, and Digital Marketing. Collaborating with peers and stakeholders, the Data Scientist will navigate the complexities of a dynamic business environment shaped by migrations, acquisitions, and evolving competencies.

About the company: Key Facts & Figures

Unique Website Visitors: 50M annually
Digital Tech Team: 80+ and growing
Team: 300+ and expanding
Revenues: £50M+
Growth Plans: Bringing 200+ airports onto their SaaS model and adding 50+ airline marketplace distributions in the next 5 years
Core Responsibilities

Collaboration

Work closely with Trading, Finance, Marketing, and Customer teams to understand data needs and provide actionable insights.
Collaborate with data engineering, governance, and the wider technology team to optimise workflows and ensure cohesive solutions.

Project Contribution

Drive data science projects from inception to completion, prioritising tasks based on business impact.
Ensure timely delivery of high-quality analytical solutions in collaboration with senior leads.

Data Analysis & Modelling

Perform advanced data analysis to identify trends, patterns, and insights.
Develop, validate, and deploy predictive models to optimise business processes, continuously refining existing algorithms.

Reporting & Communication

Develop dashboards and reports to monitor KPIs and communicate findings to stakeholders.
Present complex data insights in clear, actionable formats to support process and technology improvements.

Data Strategy

Contribute to shaping the organisation's data strategy, identifying opportunities for leveraging data to drive innovation.
Lead the development of predictive models, algorithms, and analytical tools aligned with strategic goals.

Decision-Making Responsibilities

The Data Scientist will be instrumental in:

Problem-solving and implementing improvements in data science processes and technologies.
Making informed decisions on data modelling, solution design, and stakeholder engagement.
Ensuring solutions adhere to industry best practices for reliability, efficiency, and scalability.
Key Relationships

Data Team
Engineering Team
Commercial and Trading Team
Knowledge, Experience, and Skills

Technical Expertise

Proficient in Python and SQL for data access, analysis, and interpretation.
Experience collaborating with Data Engineering to optimise workflows and infrastructure.
Experience working with Databricks or similar unified analytics platforms to streamline data engineering pipelines, optimise workflows, and facilitate collaborative data science projects.
The candidate should leverage Databricks to efficiently access, process, and analyse large datasets, supporting seamless integration with cloud platforms like AWS, Azure, or GCP.

Machine Learning & Statistical Analysis

Strong background in statistical analysis and machine learning techniques.
Familiarity with advanced models, such as Gradient Boosting Machines (GBMs), Neural Networks, and Large Language Models (LLMs).

Tools & Platforms

Hands-on experience with ML Flow, Amazon Sagemaker, TensorFlow, PyTorch, or similar platforms.
Ability to deploy robust and scalable machine learning solutions in production environments.

Agile Methodologies

Experience working in Agile or Kanban frameworks using tools like Jira and Confluence.
Proven ability to manage projects in iterative delivery cycles.

Communication & Stakeholder Engagement

Strong communication skills to distil complex methodologies into actionable insights for diverse audiences.

AI Implementation (Bonus)

Interest or experience in implementing AI solutions to enhance processes and drive innovation.

Other Skills

Meticulous attention to detail with a focus on quality deliverables.
Ability to work both independently and as part of a collaborative team.

Why Join?

This is a unique opportunity to shape and contribute to an innovative data-driven culture within a growing organisation. With cutting-edge projects and a diverse set of challenges, the Data Scientist will have a significant impact across multiple domains, driving both immediate results and long-term strategic initiatives.

To apply, please email (url removed)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.